

Exploring Dual Edges of SRAM Data Remanence in SoCs:

Covert Storage and Exfiltration Risks in TEE

Jubayer Mahmod

About me

My expertise

Hardware-Oriented System Security Cloud FPGA Security Fake Chip Detection and Anti-Counterfeit Framework Design

Senior Engineer @Lucid Motors' RedTeam

Hardware Security PhD @Virginia Tech Advised by Dr. Matthew Hicks

@jubayer0175

Disclaimer

The content of this presentation is based on my doctoral research conducted at Virginia Tech. All information shared here is publicly available from various publication venues.

It does not contain any proprietary technology and does not reflect the opinions or positions of Lucid.

Volatile memory does not forget data instantly

Data remanence: when a memory device retains information past when it is <u>assumed to no longer exist</u>

Static Random Access Memory (SRAM)

SRAM startup state: digital window into the analog world

Why Steganography?

Agent 007

Steganography is information hiding technique

Hide information in "plain sight" to allow plausible deniability of its existence.

Typical steganography media

Threat model

SRAM cell and its power on-state

- Designed to be **balanced**.
- At startup, one of the inverters wins the race condition.

In this case, by winning I mean relatively faster rise time of an inverter's pull up network.

Aging burns in data in SRAM cell

Like negative in photography, payload gets hidden as complement

Accelerating aging condition

Aging takes **decades** to impact performance.

- Aging SRAM with all 1s in it, reduces number of 1s in subsequent power on
- Aging effect is logarithmic, over time rate of change decreases

Data encoding process

InvisibleBits evaluation

Retrieval error?

Plausibly deniable?

Errors without any ECC

	Debug host						
MICROCHIP ATSAML11E16A		Controller Debugger Power source Thermal chamber					
2072AD25W64			(a)		(b)		
AEVD	Device	SRAM usage	Vacc.	Tacc.	Accuracy	Encoding time	
	ATSAML11E16A	Main memory	4.8V	85° <i>C</i>	97.2%	16 hours	
	MSP432P401	Main memory	3.3V	$85^{\circ}C$	93.5%	10 hours	
	LPC55S69JBD100	Main memory	5.5V	$85^{\circ}C$	88.5%	24 hours	
ALS !!	BCM2837	Cache	2.2V	$85^{\circ}C$	79.2%	120 hours	
LPC55S6x mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	*Accelera	ation voltages are	- derived	from exr	periments &	datasheets	
		ation voltages are		i nom ext	ciments &		

Improving accuracy

Plausible deniability

Full system implementation

Other evaluation performed: 1) Source of error 2) Recovery 3) multi-snapshot adversary

Jubayer Mahmod & Matthew Hicks, "Untrustzone: Systematic Accelerated Aging to Expose On-chip Secrets," in IEEE Security & Privacy'24.

*we made this paper public only after ARM released an architecture security advisory

Takeaways InvisibleBits

SRAM power bus is accessible from outside of the SoC

Stored data directs future power-on state

Security threats are on the rise: hardware is in the spotlight

As software security enhances, attackers shift their focus to exploiting lower-level system components.

"Ultimately, hardware is the foundation for digital trust. A compromised physical component can undermine all additional layers of a system's cybersecurity to devastating effect. Hardware security, therefore, focuses on protecting systems against the vulnerabilities at the physical layer of devices"

FORUM

Security perimeter reduction helps preventing many physical attacks

Keeping sensitive plaintext in on-chip SRAM reduces risks off-chip physical attacks (e.g. cold boot)

Enforcing secure execution prevents illegitimate access to secure memory area

Security attribute change = Memory erasure

TrustZone fundamentals

Divides a system into the Secure World & Normal World

Non-secure state cannot access secure memory area

Software **bug** in non-secure state cannot access secure memory

Cache lines are **physically shared** between the Worlds

NS tag bit indicates security levels of a cache line

TrustZone controls security attributes, but physical memory is shared between the *Worlds*.

Overarching threat model

Secrets on-chip SRAM guarded by TrustZone

Attackers have physical access

Target-information- and SoC-specific threat models

\$ Exfiltrate secrets from cache

Technical challenges

Overdrive SRAM's power bus

Capture SRAM's power-on state using software interface

Reduce contamination of SRAM power-on state

Test Platforms and SoCs

System-on-Chip	Core	SRAM size	TrustZone	Access to uncontaminated power-on state	Aging acceleration	Manufacturer
ATSAML11E16A [59]	ARM Cortex-M23	16KB	1	\checkmark	✓	Microchip
LPC55S69JBD100 [62]	Dual-core ARM Cortex-M33	320KB	\checkmark	1	\checkmark	NXP
M263KIAAE [21]	ARM Cortex-M23	96KB	\checkmark	\checkmark	\checkmark	Nuvoton
M2351SFSIAAP [19]	ARM Cortex-M23	96KB	\checkmark	\checkmark	\checkmark	Nuvoton
M252KG6AE [20]	ARM Cortex-M23	32KB	\checkmark	\checkmark	\checkmark	Nuvoton
M251SD2AE [20]	ARM Cortex-M23	12KB	1	\checkmark	1	Nuvoton
STM32L562 [85]	ARM Cortex-M33	40KB	1	\checkmark	✓	STMicroelectronics
BCM2837 (RPi3) [69]	Quad-core ARM Cortex-A53	L1:128KB, L2:512KB	\checkmark	\checkmark	\checkmark	Broadcom
BCM2711 (RPi4) [70]	Quad-core ARM Cortex-A72	L1:320KB, L2:1MB	1	\checkmark	\checkmark	Broadcom
R7FS1JA783A01CFM [25]	ARM Cortex-M23	32KB	X	\checkmark	✓	Renesas Electronics
MSP432P401 [35]	ARM Cortex-M4	64KB	X	\checkmark	\checkmark	Texas Instruments
MSP430G2553 [36]	MSP430 single cycle	0.5KB	×	\checkmark	1	Texas Instruments
EFM32WG990F256 [82]	ARM Cortex-M4	32KB	×	\checkmark	1	Silicon Labs

Exfiltrate an AES key from TrustZone

Power-on state Stored data **Interpreted data** % of bits **Transition type** Correctness **Pre-stress Post-stress** 2.19% Flipping failure 0 0 0 0 30.31% Flipping success 23.11% Reinforcing 0 26.41% Reinforcing 0 17.38% Flipping success 0 0.61% Flipping failure 0 **AES Key**6c6c2068696d2077656c746869736973617365637265746b65794.... ..6c6c246a696d2077656c746869736973677365637265746b65799... 0x20000800 Key extraction scenario #1 Error rate: 2.8% • Key search space $\approx 2^{23}$ Secure Key extraction scenario #2 Error rate: 1.27% • 0x20002000 Key search space $\approx 2^{13}$ Non-secure 0x20003FFF 33 -64 bytes-64 bytes

Pre-stress SRAM snapshot

Retrived information

Exfiltrate an AES key from TrustZone

Exfiltrate proprietary firmware

"Case: Cache-assisted Secure Execution on ARM Processors" Oakland'16

Exfiltrate proprietary firmware

	LPC1	LPC2	LPC3	Combined	-
Scenario # 1 accuracy	87.70%	86.70%	88.50%	95.82%	-
Scenario # 2 accuracy	93.20%	91.76%	93.36%	98.29%	

Visual demonstration of firmware burn-in

Secret placement influences accuracy

Exfiltrate secrets from cache

Victim software executes from CPU

Accelerated aging burns in cache lines in the analog domain

Elevated voltage

Stress time

Post-stress data extraction

Heat

Introduces a 'fake kernel'

Stops cores from enabling caches (disabled MMU)

Upon request dumps cache lines into the system RAM (using co-processor interface & ram Indexing)

Assumes secret data (attack #1) and proprietary software (attack #2) **are in the on-chip cache** (attack #3)

The AES key extraction accuracy **reaches 93.2% after** 120 hours of aging (2.025× nominal voltage and $T = 85^{\circ}$ C)

Q&A

Backup slides

Message extraction error: source (1)

- Thermal
- Long time

Performance comparison

Flash **program-time-based** scheme achieves **0.05%** capacity (256KB Flash carries 131B)[Oakland'15]

Flash **program-voltage-based** scheme improves capacity by **2x** [Usenix Fast'18]

Invisible bits (with 5 copies @<3% error) carries 12.8KB (100x)

	Ubiquity	Capacity	Resilience	Read stable	_
Flash Program-time-based	e			0	
Flash program-voltage-base	ed 🖰		•	0	
Invisible bits	0	0	0	0	
• = Excellent, •	= Very g	good, \bigcirc =	Good, 🔿 =	Fair, and $\bullet =$	· Poor

Message extraction error: source (2)

Performance comparison

Flash **program-time-based** scheme achieves **0.05%** capacity (256KB Flash carries 131B)[Oakland'15]

Flash **program-voltage-based** scheme improves capacity by **2x** [Usenix Fast'18]

Invisible bits (with 5 copies @<3% error) carries 12.8KB (100x)

	Ubiquity	Capacity	Resilience	Read stable	
Flash Program-time-based	e			0	
Flash program-voltage-base	d		-	0	
Invisible bits	0	0	0	0	
• = Excellent, •	= Very g	good, \bigcirc =	Good, 🔿 =	Fair, and \bullet =	= Poor.

Takeaways A new data hiding technique

Covert: Information stays in the hardware layer

Erase/write tolerant: Digitally indestructible

Ubiquitous: Can be implemented in almost any device

High capacity: 100x compared to state-of-the-art

Qualitative exploration of defensive landscape

Initializing the SRAM at startup

- Needs to wipe out the SRAM at startup
- Slows down boot speed
- Eliminates useful application of SRAM power-on state

Scrambling SRAM data at runtime

- Complement data at runtime to reduce burn in effect ($0xAA \rightarrow 0x55$)
- Core freezing will prevent software mitigation

Preventing aging acceleration

- Prevent over voltage
- Bypassing excess energy before reaching the core