
Secrets of Simos18
Reversing the secure boot mechanism in an automotive

Engine Control Unit

Who Am I?
Brian Ledbetter

@bri3d

Formerly: Corporate Middle

Management

Currently: SkySafe

Objectives and Agenda

● Understanding of Simos18 target

● Modification of Calibration (tuning) and Application Software

● High level overview plus random tips and tricks!

● Clean research (not using logs / reverse engineering commercial flash

tools)

○ Shoutouts: tinytuning, APR

● Open source: https://github.com/bri3d

● Two exploit chains: one in Customer Bootloader and one in Supplier

Bootloader

https://github.com/bri3d

Tools

● Raspberry Pi 3B

● Waveshare CAN hat

● MCP2518 (don’t use 2515!)

● SocketCAN + isotp

● Python

● udsoncan

● pigpio

Target

● Continental/Siemens

Simos18.1/6

● Engine Control Unit

● Used in 4 cylinder VW AG cars

~2012-2021

● PQ / MQB platforms

● CAN-based (18.4 is FlexRay)

● Specific target: 2016 Golf 7 R

Target Research: Hardware

● Infineon Tricore TC1791 - Automotive ASIL-D Safety Processor

● “AudoMAX” family - Look for the TC1978 full user’s manual

● Full documentation available from Infineon

● Toolchain available from Hightec

● Compiler is GCC based so it’s GPL!
● https://github.com/volumit/

● https://www.infineon.com/cms/en/product/microcontroller/legacy-microcontroller/other-legacy-mcus/audo-family/tc1798-1793-

1791-audo-max/

https://github.com/volumit/
https://www.infineon.com/cms/en/product/microcontroller/legacy-microcontroller/other-legacy-mcus/audo-family/tc1798-1793-1791-audo-max/

Target Research: Hardware Properties

● 32-bit RISC-ish CPU, flat address space, memory mapped peripherals, mixed

16 and 32 bit instructions

● Flash and emulated EEPROM (DFlash) are in-package - nothing external to

dump.

● Can always upload a bootstrap loader, but Flash can be protected

● Debug interfaces appear disabled.

● Boot passwords enabled so Flash is locked.

● Let’s attack the software first!

Target Research: ECU Architecture (AutoSAR)

Application Role

SBOOT / 1BL Supplier’s Bootloader. Validate

CBOOT. Written in C.

CBOOT / BootUpd / 2BL Customer’s Bootloader. Validate ASW

and perform dealership

reprogramming/updates. Written in

MISRA-ish C. Only accessible when

software damaged or Immobilizer free

ASW App Software. Run the car.

Communicate with other modules.

Written in auto-generated MISRA C

from Simulink/Labview, ASCET, etc.

Target Research: ECU Software Attack Surface (CAN)

Application External Surface Area

SBOOT ???

CBOOT ● UDS (Unified

Diagnostic Services)

Reprogramming

ASW ● UDS Diagnostics

● CCP/XCP (CAN

Calibration Protocol)

● Module comms

Target Research: Things That Didn’t Work

● UDS Diagnostic handlers in ASW
○ ReadMemory and WriteMemory locked down

● CCP / XCP
○ Present (weirdly) but has seed/key. Even once past seed/key, locked down

● Memory safety in CAN communication
○ It’s MISRA enough that there wasn’t anything obvious

● Tampering with firmware and flashing using dealer tool (ODIS)
○ Get stuck in bootloader

● Taking the ECU out of the car
○ Won’t enter CBOOT session, ConditionsNotCorrect

○ Immobilizer

UDS Reprogramming

Basics
Replicating the dealership tool (ODIS)

UDS Reprogramming Process and Protections

● Clear DTC (OBD 04)
● Check Programming Preconditions (UDS Start Routine 0x0203)
● Enter Programming Session (UDS Session 02) - will fail if immobilized
● Unlock Security Access 0x11 (VW: SA2 Seed/Key)
● Write Workshop Fingerprint: LocalIdentifier 0xF15A
● For Each Block

○ EraseMemory (Start Routine 0xFF00, passing block number as parameter)
○ RequestDownload (with encrypt/compress type and address via ALFID, in this case a block

number)
○ TransferData
○ Exit Transfer
○ Checksum Block (Start Routine 0x0202, passing block address and checksum as parameter)

● Check Programming Dependencies (localRoutine 0xFF01)
● Reboot

Flash ODX (ODX-F) ● For VW, FRF container from

Flashdaten
○ Encrypted ZIP file

○ Long-ago extracted keys from

dealer tools (ODIS)

● Describes flash process:SA2

script, blocks, erase

parameters, checksum

parameters

● Flashed using dealership tools

● ENCRYPT-COMPRESS is AA

● Data has high entropy (not

just fixed XOR or something)

● Also, no signature and

CRC32s are all zero, weird.
https://github.com/bri3d/VW_Flash/blob/master/frf/decryptfrf.py

https://github.com/bri3d/VW_Flash/blob/master/frf/decryptfrf.py

SA2 Seed/Key

Bypass

● Nothing to it really

● SA2 spec leaked long ago, it’s

a bytecode script that runs

against the Seed to generate

Key

● Even if it hadn’t, it’s all done

offline on attacker-controlled

machine, so trivial to reverse

https://github.com/bri3d/sa2-seed-key

Write a Flasher

● Perform standard UDS reflashing routine using information from Flash ODX

● This lets us recover when we screw up hacking without needing ODIS!

● Very hard to brick this ECU

● Weird little gotchas:

○ Must send OBD-II “Clear DTC” command before entering Programming Session

○ Must write to the Workshop Code / Programming Fingerprint LocalIdentifier, anything

works

○ ISO-TP STMIN_TX - ECU reports 0, reality is different

● Can’t tamper with anything yet…

https://github.com/bri3d/VW_Flash

Static Firmware Analysis
● Partial firmware discovered on forum

● Contains CBOOT, ASW

Ghidra Setup
● Ghidra already has Tricore!

● Add register layout for TC1791
● https://github.com/bri3d/ghidra_tc1791_registers

● File we found loads properly at

0x80000000

● Locate global registers

● Refer to Tricore ABI

https://github.com/bri3d/ghidra_tc1791_registers

Block Header
● Simos-specific

● Found at 0x300 in each flash

block

● Simple format: CRC32 followed

by number of address ranges,

then simple begin->end range

specifiers

● That explains why there was

no Checksum in the ODX

● Entry point address is also

found at start of block (0x0)

CBOOT Interesting Findings

● CBOOT gets copied into RAM in Programming session

● 0x80022000 (Flash) -> 0xD0008000 (SRAM)

● Lots of references to an area of Flash we don’t have yet @ 80014000, which

seems to contain cryptography functions

● Obvious giant UDS handler table

Encryption 0xA

● On this control module, 0xA

= AES-CBC

● If Encryption Type in UDS 0x34

RequestDownload is 0xA, call

a key-setting function in the

unknown area of Flash

● Keys are static, plaintext, in

flash + RAM. Got em!

Recap So Far

● Decrypted FRF into ODX (using key material from ODIS)

● Loaded ODX blocks to perform standard UDS flashing process

● Seed/Key -> SA2, script is known from ODX, interpreter reimplemented

● Obtained plaintext CBOOT file and analyzed statically in Ghidra

● Encryption -> AES with fixed keys, recovered

● Compression -> LZSS, implemented

● Signature -> RSA-2048, still not defeated

Exploit 1: CBOOT Write Without Erase (RSA

Bypass)

Security Flags

System
● Each block has RSA verified

when Checksum request is sent

● Validity flags / “Security Keys”

written beyond transfer area

● RSA is never checked again

● Can we transfer too much data

and overwrite Security Keys

area?

● Nope, doesn’t work.

● Can we transfer data over a

block we already

checksummed?

● YES!!!

Exploiting Security Flags State Machine Issue

● Enter Programming session as usual
● Request Erase for a block (let’s say block 5, Calibration)
● Request Download to a different block, let’s say block 2 (ASW)
● Transfer Data (modified)
● Exit Transfer
● Request download for the Erased block, with unmodified data
● Transfer Data (valid and unmodified)
● Exit Transfer
● Checksum the Erased block, with unmodified data

At this point, all blocks have valid Security Flags, but data has been tampered
with!

Write Without

Erase Limitations
● 64-bit ECC
● Breaking ECC makes a brick
● CRC runs every boot
● Could back-calculate ECC

(dangerous and difficult)
● 00 on Tricore is nop (hot

damn!)
● Can we find 64 bits of nop sled

64-bit aligned?
● YES! (delay in interrupt

reconfiguration routine)
● Interrupts are already disabled

here too

Payload

● Load CBOOT into RAM

● Patch Series/Sample mode

function

● Use CBOOT to write unsigned

code blocks

● Complete control of ECU…

provided IMMO is free (in

car) and ECU isn’t bricked

● Dump entirety of Flash

We Need to Go Deeper
Gaining access to the Bootstrap Loader

Tricore Boot Process

● UCB = User Configuration Blocks

● Secret areas of flash accessible to

Boot ROM at initialization

● Programmed with protection state,

passwords, SHE configuration, debug

configuration

● Boot ROM reads UCB, then

configures Flash controller and locks

UCB access

● Bootstrap Loader is always

accessible, but Flash is locked if

UCB is set up that way

● Flash access can be unlocked with

passwords from UCB

Write a BSL
● Use DAVE to generate

hardware primitives

● Use Hightec toolchain to

compile
● https://github.com/bri3d/TC1791_CAN_BSL

https://github.com/bri3d/TC1791_CAN_BSL

Upload BSL

● Awesome, it works!

● We can dump RAM!

(unexpected but makes sense)

● CBOOT AES key extraction is

easy now

● Hangs on Flash access

● Dump flash configuration ->

Protected by UCB (plus an

OTP region)

Getting Passwords
● Search for XRefs to Flash

controller magic address

0xA0005558

● Locate methods where

passwords are sent to flash

controller to see how they are

calculated

● They’re in plaintext in OTP area!

● Verify by reading using

WriteWithoutErase exploit and

sending with BSL.

● It works!

● Need a read primitive

Exploit 2: SBOOT

Command Processor (TSW)

SBOOT

● Supplier Bootloader

● Located at 0x80000000 (entry point)

● Validates CBOOT

● Promotes CBOOT_Temp over CBOOT

● Has a backdoor command shell (TSW) in it!

SBOOT entry function

● Configures GPTA timer / logic

analyzer peripheral to measure

some values

● Waits for specific CAN

messages

SBOOT PWM

SBOOT PWM ● GPTA Timer Counter

measures posedge(sig1) ->

posedge(sig2). Count must be

< 0x80A

● System timer measures time

between interrupts at

posedge(sig2), must be <

0xAAA

● 8.75MHz tick clock

● 235uS sig1 -> sig2

● 312uS sig2 -> sig2

● 3.22kHz phase-shifted by 1/4

SBOOT Command Processor (TSW)

SBOOT Command Processor (TSW)

Command (Sent using ISO-TP Framing) Behavior (A0 = Positive Response)

7D XX XX XX Has a few weird little subcommands, does not affect state

6B Ping! Always replies with A0 02

30 ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? Sets parameters in RAM at D0000010, escalates state

54 Request Seed. Returns a fixed value followed by 0x100 bytes

of high-entropy data

65 ?? x 0x100 Send Key. Requires 0x100 bytes of data, checks value

against data generated during Request Seed process

78 AA AA AA AA XX Set Byte. Sets a byte in the RAM scratchpad area at

B0010000 - B0015000. Strong bounds checking. Requires

Seed/Key first

79 Boot. Invokes validation process against RAM area

SBOOT

Seed/Key ● Generate 256 bytes of PRNG

● Encrypt using RSA public key

● Expect original 256 bytes to be

sent back (decrypted using

private key)

● Public key not vulnerable to

common factoring issues

● e=65537, not really vulnerable

to common large-modulus /

payload stuffing, plus all 256

bytes are checked

SBOOT

Seed/Key
● Inadequate entropy: can easily

precalculate all 2^31 possible

plaintext -> ciphertext pairs

practically on modern hardware.

● Especially inadequate entropy

because it’s the system timer.
● https://github.com/bri3d/Simos18_SBOOT/blob/main/twister.c

https://github.com/bri3d/Simos18_SBOOT/blob/main/twister.c

SBOOT code-block RSA

● Uses same block structure / headers and crypto lib in OTP as main RSA

● Seems fairly robust

● RSA2048-PKCS#1.5-SHA256 with proper padding / whole-message

comparison

● No block reuse attack as SHA256 data has addresses mixed in

● No obvious memory safety issues

● Are we stuck?

FAIL!

● CRC_START can be set to any address before 0xB0010131

● What’s before 0xB? 0x8…

● CRC_END still needs to be after 0xB001012F though…

Read primitive
● Code block has a header with

CRC addresses
● CRC is checked before RSA
● Bounds check inadequate
● Can control beginning of CRC

region freely
● Checksum the Flash

passwords?
● Can’t control end of region
● Wait… we can read RAM in

BSL!
● Reset timing attack to dump

state

No Demo :(

● Send PWM signals to signal

SBOOT breakin

● Wait fixed time before sending

Seed request

● Bruteforce Seed ciphertext until

we find matching Key plaintext

● Send seed/key

● Send block header with bounds

set to flash password location

● Back-calculate CRC to extract

Flash passwords

Recap (Architecture Revisited)

Application Purpose

SBOOT @ 0x80000000 ● CBOOT promotion

● TSW - vulnerable

Crypto @ 0x80014000 ● AES

● RSA

● Hitag-looking LFSR used for

DFlash encryption

CBOOT @ 0x8001C000 ● UDS Reprogramming -

vulnerable

ASW @ 0x80040000 ● UDS Diagnostics

● CCP/XCP

● Inter-module communication

What should

Continental have

done differently?

● PRNG is only as strong as

seed

● Never use timer for PRNG

seed

● Need more than 31 bits of

entropy in today’s world

● Most strict possible bounds

checking

● CRC is a read primitive

● Trust Flash less (verify more)

● Why not just discard the read

passwords?

Applicability to

Modern ECUs

● Very similar exploits in Bosch

MED17/MG1 until 2021

● Broadly applicable in concept

to almost everything European

2010-2020

● This is “last gen” now

● Newer ECUs use Aurix Tricore

variant with HSM (ARM

TrustZone core inside of

Tricore!) for Sample Mode and

key storage

Research ideas

● Glitch Tricore BootROM +

Flash controller
○ Flash controller and debug

interfaces initialize in insecure

state

○ Felix Domke (tmbinc) did this on

previous generation Tricore with

static voltage and it worked (lol!)

○ Looking at BootROM, pretty sure

EMFI could be very plausible too

○ Also decapping and accessing

Flash die probably practicable (if

you want to try this look at DSG

which has Tricore on flexible

package)

Thanks

● tinytuning - original research,

especially around

WriteWithoutErase and LZSS

● Joedubs - lots of early code

● AaronS3, ConnorHowell,

switchleg1 - various code

contributions, Haldex and DSG

research and development,

drivers, firmware, etc.

Additional

reading

● JinGen Lim -

https://github.com/jglim/UnsignedFlash/blob/main/document_pub.pdf

- very similar flash exploit in Mercedes

IC204 instrument cluster

● Willem Melching (hi!) - https://github.com/I-CAN-

hack/pq-flasher and https://icanhack.nl/blog/vw-part1/ - VW

Power Steering research and a great intro

series

● Felix Domke - https://media.ccc.de/v/33c3-7904-

software_defined_emissions - static voltage glitching

against previous-generation Tricore

https://github.com/jglim/UnsignedFlash/blob/main/document_pub.pdf
https://github.com/I-CAN-hack/pq-flasher
https://icanhack.nl/blog/vw-part1/
https://media.ccc.de/v/33c3-7904-software_defined_emissions

Questions?

