
My Car, My Keys
obtaining CAN bus SecOC signing keys

Greg Hogan, Willem Melching

Purpose of this Talk

● Extract keys needed to sign messages on the CAN bus

Over the next 45 minutes you will:

● Learn about Car Hacking

● Learn about SecOC

● Learn about our specific exploit/bug chain

2

Purpose of this Talk

● Extract keys needed to sign messages controlling steer-by-wire

● Prove people wrong on the internet

3

About the Speakers

Willem Melching

● Boutique cyber security consultancy: I CAN Hack

● Automotive & Embedded

● Consulting, Pentest, Fuzzing and Training

Greg Hogan

● Head of Infrastructure @ comma.ai

● Automotive firmware reverse engineering and modification

4

Introduction

5

Why this Research?

6

Openpilot

● openpilot is an open source advanced driver assistance system
○ Automated Lane Centering

○ Adaptive Cruise Control

○ 250+ car models

● https://github.com/commaai/openpilot

Source: I Turned my Toyota Corolla into a Self Driving Car by Greer Viau
https://youtu.be/NmBfgOanCyk

7

https://github.com/commaai/openpilot

New CAN Messages

● New car showed up, people tried openpilot port and ran

into new kind of checksum

● At some point realized it was SecOC which uses a

cryptographic signature instead of a checksum

Standards:

● AUTOSAR 654: Specification of Secure Onboard

Communication (SecOC)

● JASPAR ST-CSP-6: Requirements Specification for Message

Authentication

8

Timeline

● August 2020: New car model with SecOC showed up

● March 2022: Obtained power steering motor

● November 2022: Firmware Extraction

● March 2023: Released Exploit

9

Automotive 101

10

CAN Bus

11

CAN Bus - Timeline

Source: Mercedes-Benz 600 SEL W140 by nakhon100 / CC-BY-2.0

● Controller Area Network (CAN)

● Developed by Bosch in 1986

● First use in W140 S-Class in 1991

● ISO 11898 in 1993

12

CAN Bus - Performance

● Up to 1 Mbit/s
○ Typical speeds are 500 Kbit/s and 125 Kbit/s

● Up to 8 bytes of payload

● CAN-FD, 64 bytes of payload @ 8 Mbit/s
○ ISO 11898-1:2015

Source: A complete CAN bus frame, including stuff bits, a correct CRC, and inter-frame spacing by Dr. Ken Tindell / CC-BY-SA-4.0

13

CAN Bus - MiTM

● CAN Bus arbitration has no guarantees on timing

● Man-In-The-Middle attack

14

Network topology

● Typical car has multiple busses
○ E.g. powertrain, body, convenience, …

● Gateway to separate busses and OBD-II port

● Modern cars might use (automotive) Ethernet alongside CAN
○ Video Stream

○ Software Updates

15

Unified Diagnostic
Services (UDS)

ISO 14229

16

Unified Diagnostic Services (UDS)

● Reflash/Update ECUs in the field

● Diagnose problems in the workshop
○ Read sensor data

○ Actuator tests

● Useful for car hacking!

17

UDS Request & Response

● Service ID
○ “Function name”

○ SID, or $

● Sub Function ID (optional)
○ E.g. start, stop, read results

● Standard Error codes. E.g.
○ 0x11: “Service Not Supported”

○ 0x13: “Incorrect Length or Format”

○ 0x35: “Invalid Key”

18

UDS SID $10 - Diagnostic Session Control

● Sub Function ID = Session Type
○ 0x1 - Default Session

○ 0x2 - Programming Session

○ 0x3 - Extended Diagnostics

19

UDS SID $23 - Read Memory By Address

● Read RAM, sometimes whole Flash

● Usually disabled, or ranges limited

20

UDS SID $27 - Security Access

● Sub Function ID
○ Odd (1, 3, …) - Request Seed

○ Even (2, 4, ..) - Send Key

21

UDS SID $27 - Security Access

● Use cryptographic algorithm to compute key based on seed
○ Verified by ECU

● Usually symmetric cryptography
○ Simple XOR cryptography

○ Custom Linear-Feedback Shift Register (LFSR)

○ AES

● Asymmetric cryptography

● Future: UDS SID $29 with PKI

22

UDS SID $31 - Routine Control

● Sub Function:
○ 0x1 - Start

○ 0x2 - Stop

○ 0x3 - Get Results

● Erase flash, compute checksum, etc

23

UDS SID $34/$35 - Request Download/Upload

● From ECU’s perspective
○ Download = Tester -> ECU (e.g. software update)

24

UDS SID $36 - Transfer Data

● Used to transfer data after requesting upload/download

25

Firmware Updates

26

Typical Memory Layout

● Bootloader

● Application Code

● Data/Calibration lookup tables
○ Sometimes part of Application

● No signature check on every boot
○ Takes too long to boot

27

Firmware Updates

● Application Running Normally

28

Firmware Updates

● Application Running Normally

● Jump to Bootloader
○ Request Programming Session (e.g. $10 0x02)

29

Firmware Updates

● Application Running Normally

● Jump to Bootloader
○ Request Programming Session (e.g. $10 0x02)

● Erase
○ Routine Control “Erase Memory” (e.g. $31 0x01 0xFF00)

30

Firmware Updates

● Application Running Normally

● Jump to Bootloader
○ Request Programming Session (e.g. $10 0x02)

● Erase
○ Routine Control “Erase Memory” (e.g. $31 0x01 0xFF00)

● Flash new Application
○ Request Download ($34)

○ Transfer Data ($36)

31

Firmware Updates

● Application Running Normally

● Jump to Bootloader
○ Request Programming Session (e.g. $10 0x02)

● Erase
○ Routine Control “Erase Memory” (e.g. $31 0x01 0xFF00)

● Flash new Application
○ Request Download ($34)

○ Transfer Data ($36)

● Verify Checksum/Signature
○ Routine Control “Check Programming Dependencies” (e.g. $31 0x01 0xFF01)

32

Reverse Engineering
Automotive Firmware

33

Automotive Microcontrollers - Architectures

● Power PC
○ NXP/FreeScale MPCxxxx (SCxxxx)

● V850
○ Renesas

● TriCore
○ Infineon

● Safety Requirements (ASIL)
● Less resistant to modern attacks

○ Fault Injection

34

JTAG/Proprietary UART

You might get lucky and it is easy to obtain the code

● Microcontroller manufacturers often have specific

hardware required for free software they provide

● Becoming more common that it is locked

35

Getting Started in the Code

● Ghidra has good support for automotive

microcontroller architectures

● Ghidra automatic analysis
○ Disable “Create Address Tables” due false positives in

the middle of code

36

Getting Started in the Code

● Ghidra Entropy Map is helpful in

finding all the code that automatic

analysis missed

37

Identifying XCP/CCP Handlers

If present, often supports read/write of any address

Hard-coded error codes that show up in many places:

● CAN Calibration Protocol (CCP)
○ 0x30 = unknown command

○ 0x32 = parameter(s) out of range

○ 0x33 = access denied

● Universal Measurement and Calibration Protocol (XCP)
○ 0x22 = command parameter(s) out of range

○ 0x25 = access denied, seed & key is required

○ 0x29 = Sequence error

38

Identifying UDS handlers

Sometimes Read Memory By address is implemented

Hard-coded error codes that show up in many places:

● 0x12 = sub-function not supported

● 0x13 = incorrect message length or invalid format

● 0x22 = conditions not correct

● 0x33 = security access denied

39

Find CAN Registers

● Valuable starting point for tracking down

functionality controlled by CAN messages

40

Global Variables

● Extremely common

● Makes diagnostic commands that can read or write

arbitrary addresses extremely useful

41

Map Out Large Structs

Following data as it flows through multiple

layers of the application can be complicated

● Can be many copies of large structs

created across layers of application

● Causes few references to addresses of

interest due to memcpy from base

address of struct

42

CAN Parsing - Table Based

● Table Based
○ Generated based on DBC file

43

CAN Parsing

● Explicit Code
○ Probably still generated

44

Export program to C/C++

Easiest way to search C code for patterns such as

● Building CAN messages being packed via multiple bit shift and mask operations on a single line

● XOR + bit shift operations used in checksums and security access algorithms

45

AUTOSAR

● AUTomotive Open System ARchitecture

● Open specifications, closed source

● BSW Implementations by different vendors
○ Vector MICROSAR

○ Mentor/Siemens VSTAR

○ Some open source implementations

● MCAL, Microcontroller abstraction Layer
○ Made by MCU vendor

46

AUTOSAR

● Standards for function signatures/API

Source: AUTOSAR 806 Specification of Crypto Interface

47

Secure on Board Communication
“SecOC”

48

Message
Authentication

49

Checksums

● 2, 4 or 8 bit checksums on CAN messages
○ Both for safety (e.g. check for bitflips during copy)

○ as well as anti-tampering

● Types of checksum
○ Sum of bytes / XOR

○ CRC8

○ Proprietary Algorithm / “Cryptography”.

■ Miller & Valasek “Remote Exploitation of an Unaltered Passenger Vehicle” 2015

■ aka The Jeep Hack

● Security by Obscurity

50

SecOC

51

Secure Onboard Communication (SecOC)

● AUTOSAR Standard
● Authentication

○ Message is sent by known ECU

● Integrity
○ Message contents have not been tampered with

● Rollback protection
○ Freshness Value

● Low Overhead
○ Suitable for classic CAN with 8 byte payload
○ Real-Time processing

● Chosen Cipher: AES CMAC
○ RSA signatures cannot be truncated
○ Hardware Acceleration

52

SecOC Overview

53

Freshness Value

● Trip Counter
○ Increase on Ignition cycle

○ Should be stored in Non-Volatile storage

● Message Counter
○ Increased after each message from a certain ID

● Reset Counter
○ Increased Periodically by Gateway

● Truncated Freshness Value
○ Contains lower part of message & reset counters

54

Data to Authenticator

55

Secured CAN Message

56

Key Management

57

Secure Hardware Extensions (SHE) Keys

Source: AUTOSAR 948 Specification of Secure Hardware Extensions 58

Key Update Procedure

● Keys are not transmitted in plaintext

● Vehicle manufacturer generates new key and encrypts it

● ECU validates encrypted key and sends back encrypted counter

59

Generation of M2 (encrypted key)

● Contains new key encrypted with AES-128-CBC using another unknown key

60

Capturing Key Update Does Not Help

● M2 is easy to get but we have no way to decrypt and obtain the new key

61

Firmware Extraction

62

Target

● Target one specific car model to start

● ECU that was most likely an easier target
○ Power Steering ECU

○ ASIL D Safety -> Less modern features

63

Target

64

Target

● RH850/P1M-E
○ R7F701381

● JTAG Locked

● Fault Injection Attack

● RX65: Franck Julien “Renes'hack” (2021)
○ https://www.collshade.fr/articles/reneshack/rx_glitch_article.html

65

https://www.collshade.fr/articles/reneshack/rx_glitch_article.html

Target - Protection Settings

● “Serial programmer connection disabled” enabled
○ This doesn’t actually disable the serial connection

Source: RX65N Group, RX651 Group User’s Manual: Hardware

66

Target - Power Supplies

● Internal 1.25V regulator for Core Voltage (VCL)

● Brought out to external capacitor

● Two cores, two VCL pins

Source: RH850/P1M-E Group User’s Manual: Hardware - Section 9.3.1

67

Target - Glitch Setup

● Removed bypass capacitors

● Added 2x crowbar N-Fet to VCL pins

● Glitching one VCL pin also works, less

reliable

68

Target - Glitch Setup

● Removed bypass capacitors

● Added 2x crowbar N-Fet to VCL pins

● Glitching one VCL pin also works, less

reliable

69

Glitch Setup - Raspberry Pi Pico

● <$10 in Hardware Cost

● Connected to PC for glitch width/delay

● Monitoring commands to RH850 to trigger glitch

● Can easily be replicated using a ChipWhisperer Husky

● Code on GitHub:
○ https://github.com/I-CAN-hack/rh850-glitch

70

https://github.com/I-CAN-hack/rh850-glitch

Glitch Setup - Results

71

Reverse Engineering

72

Application

73

● Gateway is between source (camera) and target

(power steering), but firmware confirmed message

authentication happens in power steering ECU

(MITM attack not possible)

Bypass Validation ✗

74

● No XCP implementation found

● No CCP implementation found

● UDS read memory by address is implemented

○ blocked for address ranges containing the keys

● SecOC doesn’t seem to have any issues

General Audit ✗

75

SecOC Keys in RAM ✓

● All cryptography done in software
○ No HSM used

● Keys are in flash and RAM

76

● Found signing keys in data flash, but keys are different for each vehicle
○ we could only sign messages for the ECU we tore apart (need non-invasive solution)

Reuse Signing Key ✗

77

● Multiple ways found to re-key ECU using ECU_MASTER_KEY
○ UDS routine control 0x1010

○ Arbitration IDs 0x13-0x1A

● Found master key in data flash, but key is different for each vehicle
○ we can only re-key the ECU we tore apart (need non-invasive solution)

Change Signing Key ✗

78

● SecOC message validation is skipped for about a second after ECU boots
○ Did not find a way to extend this for a longer period of time

● Could patch firmware to disable SecOC validation, but we hope for a better solution

Disable Message Authentication ✗

79

Other Interesting Findings

We noted some interesting quirks, but at this point we moved onto the bootloader.

● There seems to be no anti-rollback protection on the Trip Counter
○ ECU on the desk accepted lower trip counter after reboot

● The UDS handler has two non-standard SIDs: $AB and $BA
○ Process 5 character commands, not sure of purpose (e.g. BAENE, JTEKM, JTRM1)

● A default key set at the factory works until you provision the ECU in a vehicle
○ Replacement part initial signing key: 0x11111111111111111111111111111111

80

Bootloader

81

UDS Findings

● Noticed possible to request download to both a region

in Flash as well as RAM

● No actual code found that handles self-programming of

Flash

● Found routine that would call code from the RAM

region that could be flashed

82

UDS Self-Programming Routines

● Realized ECU expects tester to upload self-programming routines to RAM

● Single function that takes operation (erase, flash) and pointer to data as arguments

● Some theories as to why:
○ Routines need to run from RAM anyway

○ Allows fixing potential problems in the bootloader

○ Extra decryption steps

● Other ECUs do this as well, but it’s more common to upload a whole 2nd stage bootloader instead

of just a few routines

● No updates for this ECU, so no payload available to reference

83

Uploading a Payload

● Not as simple as uploading some shellcode

● ECU expects a blob with specific layout
○ Contains both CRC32 and AES CMAC of the code

○ CRC Start and CRC Size need to be specific hardcoded values

● Blob needs to be AES CBC Encrypted

84

Payload Encryption

● Derive key based on AES Key in firmware,

and client provided data and IV

● Use derived key to compute CMAC and CBC

encrypt the payload

● Took quite a bit of RE effort, as data is

decrypted asynchronously in a separate

thread

85

Payload Construction

● Build V850 cross-compiler
○ gcc-v850-elf

86

Payload Construction

● Build V850 cross-compiler
○ gcc-v850-elf

● Send out RAM contents over CAN bus

87

Payload Construction

● Build V850 cross-compiler
○ gcc-v850-elf

● Send out RAM contents over CAN bus

● Reset ECU

88

Payload Construction

● Build V850 cross-compiler
○ gcc-v850-elf

● Send out RAM contents over CAN bus

● Reset ECU

● Build Payload

89

Summary of Findings

90

1. Jump to bootloader, SID $10 (Diagnostic Session Control)

2. Authenticate using SID $27 (Security Access)

3. Set data to derive AES key and IV using SID $2E (Write Data By Identifier)

4. Upload encrypted blob with fake flashing routines to address 0xFEBF_0000 using SID $34/$36/$37

5. Run routine control 0x10F0 using SID $31 to have the ECU verify the CRC and CMAC of the blob

6. Request to erase a bit of the flash using routine 0xFF00. This will trigger the fake flashing routine and

execute the payload

Exploit step-by-step

91

Demo

92

Live Demo!

93

94

Conclusion

95

Two Vulnerabilities

● Code Execution in Bootloader
○ Present on all recent models tested so far

● SecOC Keys stored in plaintext
○ Present on just two models

● ECU held up pretty well
● Mostly bad specification

○ No real code issues found in >250 hr of reverse engineering

● Exploit PoC released on GitHub:
○ https://github.com/I-CAN-hack/secoc
○ Pre-signed payload to extract part of RAM holding SecOC keys

96

https://github.com/I-CAN-hack/secoc

Mitigations in newer ECUs

● HSM is used for CMAC
○ No more plaintext keys in RAM/Data Flash

● Code execution in bootloader still present
○ Same encryption/signing key shared across many different cars

● Not much time spent reverse engineering yet

97

Recommendations

● Delete SHE keys (KEY_n) on entering bootloader/update flow

● Use different SecOC key per message
○ Set proper Generate/Verify permissions per key

○ Prevent turning ECU into signing oracle

○ Requires HW support & enough key slots

● Implement proper secure boot
○ Prevent patching out verification on target ECU

● Use RSA signatures for update files

Source: AUTOSAR 948 Specification of Secure Hardware Extensions

98

Responsible Disclosure

● “Give Tesla a reasonable time to correct the issue before making any information public.”

vs

● “To protect our customers, [...] does not publicly disclose vulnerabilities until [...] has conducted an analysis
and provided fixes and countermeasures.”

● “By sending a vulnerability information you agree to not publicly disclose or share the vulnerability with
other people and organization until [...] provides the conclusion.”

“We call on all researchers to adopt disclosure deadlines in some form, and feel free to use our policy verbatim if you find our record

and reasoning compelling. Creating pressure towards more reasonably-timed fixes will result in smaller windows of opportunity for

blackhats to abuse vulnerabilities. In our opinion, vulnerability disclosure policies such as ours result in greater overall safety for users

of the Internet.”

Source: https://about.google/appsecurity/
99

https://about.google/appsecurity/

Questions?

100

