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AI at the Edge

• Adoption of AI at the Edge

• generative AI: smart assistant

• medical imaging

• traffic control

• drones

• self-driving cars
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Smart drones

• drones equipped with AI are much more capable: autonomous

• development and IP behind these are crucial to be protected
for e.g. the military

• this is not only limited to drones
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Self-driving cars

• The intelligence behind self-driving cars is based on neural
nets

• Tesla Autopilot: 48 networks which take 70000 GPU hours
(≈ $3.5M) to train

• dataset collection, training and R&D is extremely expensive

Figure 1: Panoptic segmentation,
source: nvidia.com
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Attacks on DNNs I.

• Models and gathered datasets are intellectual property

• designing and training a neural network is costly

• the data is often valuable or private (health-care, financial)

• Wide variety of attack goals:

1 membership inference

2 backdoor attacks

3 model extraction attacks → BarraCUDA
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Attacks on DNNs II.

• Edge devices can be potential targets for side-channel attacks
due to:

• attacker can have physical access

• limited computing resources

• low latency requirements
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DNN building blocks

• architecture: defines order
and types of transformations
(layers) on the input, the
structure

• weights: internal
parameters of the layers
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Crypto vs. DNNs I.

From SCA perspective, the methods are the same for either DNNs
or crpyto:

• architecture ≈ crypto algorithm

→ operational leakage

• weights ≈ key → data-dependent leakage
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Crypto vs. DNNs II.

Figure 2: Crypto (AES ECB) vs. NN
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Research question

Are neural network implementations on GPU
vulnerable to weight extraction?
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Related work

Author Platform clock freq. (MHz)

Batina, et al. microcontroller 20, 84

Dubet, et al. FPGA 24

Yoshida, et al. FPGA 25

Regazzoni, et al. FPGA N/A

Yli-Mäyry, et al. FPGA N/A

Li, et al. FPGA 25

Joud, et al. microcontroller 100

Gongye et al. FPGA 320

BarraCUDA GPU 920
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CUDA programming model

• hierarchical model of grids of thread blocks

• the thread blocks are scheduled to the Streaming
Multiprocessors (SM) of the GPU where they form groups of
32 threads called warps

CUDA programming level GPU hardware level

Streaming Multiprocessor

Warp 1Grid of thread blocks

PU 1 PU 2

PU 3 PU 4

Warp 2

Warp n
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GPU chip

Figure 3: Maxwell 750 TI,
750 TI Whitepaper
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GPU Streaming Multiprocessor

Maxwell Streaming Multiprocessor

PU 1

Shared memory

Texture / L1 cache

PU 2

PU 3 PU 4

Instruction cache

Instruction buffer

Warp scheduler

Dispatch units

PU

Cores

Register file

Texture / L1 cache

LD/ST SPU

Figure 4: Maxwell SM

13 / 36



Target & threat model

1 Nvidia Jetson Nano: TX1 chip with Maxwell GPU

2 Objective: FP16 weights of Convolutional Neural Network
(CNN)

3 requires physical access to collect EM

4 CNN architecture is known

Figure 5: Jetson Nano
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Challenges

1 High clock-frequency: requires good equipment

2 Unstable clock: hard to synchronize traces, more
measurements are needed

3 Noise: parallel GPU threads, SoC & OS

4 Warp scheduling uncertainty: more measurements

5 Parallel threads: leakage model
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Methodology

1 Leakage detection
• scan whole package and nearby capacitors for EM
• use fixed vs. random weight TVLA to detect Points-of-Interest

(PoI)
• establish appropriate leakage model

2 Leakage exploitation
• apply Differential Power Analysis (DPA) at PoIs
• go weight-by-weight in a kernel by targeting the partial results

in the convolution

3 Investigate noise contribution
• Two experiments to compare noise introduced by more

threads:

• small 2-layer CNN with just one kernel

• 18-layer CNN EfficientNet
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Chip scan

Figure 6: TX1 surface scan with 300 µm resolution
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Setup
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Setup
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Convolution implementations

• convolution can be implemented in many ways

1 Fast Fourier Transform

2 matrix multiplications: optimized for GPU
• special cases: Winograd convolution

• Jetson Nano FP16 convolution structure:

1 Init block
2 Convolution block
3 Bias + Relu
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Conv layer segmentation
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Two-layer trace
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Leakage modeling

• different data types influence leakage modeling

• FP16 underlying instruction: HFMA2 R0, R1, R2, R0 ;
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Leakage modeling

Leakage modeling determines how efficient the attack will be, we
can

1. focus on a single lane (thread) in a warp and a single weight
at a time

• we only have to guess 16 bits
• simple and only a fraction of the inputs have to be known (one

from each input channel)
• it is most likely not the best leakage model

2. focus on multiple lanes in a warp that use the same weight
at the same time

• still 16 bits
• might be a better model
• more details about input loading have to be known
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Leakage modeling

3. focus on a single lane in a warp with two weights
• we have to know guess 32 bits
• definitely a better leakage model then #1
• still only a fraction of the inputs have be known

4. and more: multiple warps with the same weight
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Weight leakage
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Figure 7: Weight TVLA
• Hamming-weight and Hamming-distance based leakage
models both work

26 / 36



Bias leakage
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Figure 8: Bias TVLA

27 / 36



Results
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Figure 9: First weight in first layer of small CNN with 7M traces
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Results
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Figure 10: Second weight in second layer of small CNN with 7M traces
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Results
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Figure 11: Third weight in first layer of EfficientNet with just 2
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Results
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Figure 12: Third weight in second layer of EfficientNet
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DPA parallelization & cost

1 DNNs have lot of weights and are highly parallelizable

• this also means DPA is parallelizable against DNNs

• e.g. convolutional layer: kernels independently calculate dot
products

• similar to running AES in parallel with different keys

2 attack time linearly scales with kernel size

3 our CUDA implementation: 5 GPU minutes for one weight
(3080 RTX)

4 for a NN with 5 million weights ≈ $ 50-60K
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Countermeasures

All countermeasures come with performance or cost overhead, but
there are some options:

• Masking: break the relationship between power and data

• Shuffling: randomize order of multiplications

• EM containment: miniaturization lowers EM emanations

• Warp scheduling randomization: this is GPU specific,
similar to shuffling but on a higher level.
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Future research

• the current trend in AI is to use lower and lower precision (8
or even 4 bits)

• lower precision = lower attack complexity, since DPA does
exhaustive key search

• newer GPU architectures
• Tensor Cores
• Integer Dot Product and Accumulate: IDP4A
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Conclusions

1 GPUs are tough targets but not impenetrable

2 multiple leakage models work suggesting multiple components
are vulnerable

3 attack can be parallelized

4 on the other hand, cost of attack can be high
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Thank you!
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