
6/1/2024 v1.1 Marcus Engineering © 2024 1

Teaching New Tricks to an Old Micro
Breaking into Chips By Reading the Datasheet

Hardwear.io USA 2024

6/1/2024 v1.1 Marcus Engineering © 2024 2

•Overview
•Approach & Why This Part
•Reading The Manual
•Exploit 1: Checksums
•Exploit 2: Programming
•Demo

Outline

6/1/2024 v1.1 Marcus Engineering © 2024 3

Who Are We?

Mark Omo
Engineering Director
• Leads the Engineering team at Marcus Engineering
• Expert in hardware and embedded security
• Background in regulated device design in the Medical,

Industrial, Aerospace, and Consumer market segments
• Former System Engineering Lead at Google

James Rowley
Senior Security Engineer
• Leads security programs at Marcus Engineering
• Expert in disassembly and embedded security
• Background in regulated device design in the Medical,

Industrial, Aerospace, and Consumer market segments
• Couldn’t be bothered to update his headshot

6/1/2024 v1.1 Marcus Engineering © 2024 4

How did we get on this topic?

6/1/2024 v1.1 Marcus Engineering © 2024 5

Doing some security
research on a popular
model of low-end
electronic safe lock from
a major brand.

Need its firmware!

Researching Safe Locks

6/1/2024 v1.1 Marcus Engineering © 2024 6

What’s our first move?

6/1/2024 v1.1 Marcus Engineering © 2024 7

Teardown Time

6/1/2024 v1.1 Marcus Engineering © 2024 8

Where’s the microcontroller?

Here it is!

Luckily they
labeled it!

6/1/2024 v1.1 Marcus Engineering © 2024 9

Side note:
They labeled every
component with a
part number

Part is a
NEC Renesas
µPD78F9202

Quick PCB Reverse Engineering

6/1/2024 v1.1 Marcus Engineering © 2024 10

Now to get the firmware.

6/1/2024 v1.1 Marcus Engineering © 2024 11

RTFM
What secrets could it hold?

6/1/2024 v1.1 Marcus Engineering © 2024 12

•Fortunately, NEC carefully documented the flash
programming protocol.
• Entry, commands, params, etc.

•The necessary pins are already
broken out to a header, too.

•Programmed a Teensy to do the half-duplex
single-line UART communication and setup.

Flash Memory Programming

6/1/2024 v1.1 Marcus Engineering © 2024 13

•Get it into programming mode, and…

•ah, there’s no “read” command.

How do we dump the code?

6/1/2024 v1.1 Marcus Engineering © 2024 14

• On the typical micros we work with:
• There is a read command
• Or at least a debugging interface

• Those are good glitch targets to bypass security
• However, this micro is not

nearly that advanced.

What would we normally do?

6/1/2024 v1.1 Marcus Engineering © 2024 15

Time for a closer read of the
programming guide…

6/1/2024 v1.1 Marcus Engineering © 2024 16

RTFM Part 2:
Attack of the Datasheet
Burn Before Reading

6/1/2024 v1.1 Marcus Engineering © 2024 17

•What else can we look for?

•Looking for anything that interacts with the flash
• Can we gain insight about that’s inside?

•What data might unintentionally be leaked?

So there’s no read command.

6/1/2024 v1.1 Marcus Engineering © 2024 18

•Chip Erase
•Block Erase
•Chip/Block Erase Verify
•Programming
•Security Set
• Internal Verify
•Checksum

What commands do we have?

6/1/2024 v1.1 Marcus Engineering © 2024 19

•Writes data.
• That’s a real flash write,

so can only change
1’s to 0’s.

•We don’t particularly
want to overwrite the
data.

Write/Programming

6/1/2024 v1.1 Marcus Engineering © 2024 20

• Writes data to the special
security byte.
• That’s a real flash write, so

can only change 1’s to 0’s.
• Weird, it’s the same

command byte as for
Programming…

• We don’t particularly want
to activate more security.

Security Set

6/1/2024 v1.1 Marcus Engineering © 2024 21

• Run after Programming or
Security Set command.
• Maybe checks if all bytes

match what was sent.
• I don’t think there’s a write

buffer, though.
• Or maybe checks analog

write level somehow.
• Can’t send it data to verify,

it just does its thing.

Internal Verify
“Checks the write level of a specified block.”

6/1/2024 v1.1 Marcus Engineering © 2024 22

• Erases a block of flash.
• Don’t want to do that.

• Could this erase security bits
independently?

• Notice that after Chip Erase,
you’re supposed to send Block
Erase Verify for block 80h.

• Does 80h correspond to the
security bits?

• Still, there’s no disabled read
command for us to get.

Block Erase
“Checks the erasure level of the entire flash memory.”

6/1/2024 v1.1 Marcus Engineering © 2024 23

•Erases all flash.
• Including security bits.

•Oddly, you have to tell it
how many blocks it has?
• Maybe exploitable?
• Still, don’t want to erase

anything.

Chip Erase

6/1/2024 v1.1 Marcus Engineering © 2024 24

•Checks if a block was
erased.
• Maybe checks if all bytes

are logical 1’s, or…
• Maybe checks analog

erase level somehow.
• Best case, can tell us if a

whole block is blank.

Block Blank Check (Block Erase Verify)

“Checks the erasure level of a specified block.”

6/1/2024 v1.1 Marcus Engineering © 2024 25

•Checks if the whole chip
was erased.
• Maybe checks if all bytes

are logical 1’s, or…
• Maybe checks analog

erase level somehow.
• Best case, can tell us if

the whole chip is blank.
• Hopefully, it isn’t…

Chip Blank Check (Chip Erase Verify)

6/1/2024 v1.1 Marcus Engineering © 2024 26

•Computes the checksum
of one or more blocks.
• So it’s reading the flash!
• Only works on blocks…

but you can specify the
start and end address?

•This might work.

Checksum

6/1/2024 v1.1 Marcus Engineering © 2024 27

•We can get the checksum of each block.
• That’s something.

•Could we get the checksum of each byte?

Checksum command looks promising.

6/1/2024 v1.1 Marcus Engineering © 2024 28

To the lab!

6/1/2024 v1.1 Marcus Engineering © 2024 29

How to test this?

• This chip needs some special
inputs to get into programming
mode, in a sequence:
• Power
• DGCLK pulse
• DGDATA pulse
• DGCLK input clock

• Only after all of this is DGDATA
used as a UART pin.

• So we’ll write an Arduino program to handle all that.
• Then may as well implement the commands there too.

6/1/2024 v1.1 Marcus Engineering © 2024 30

•Who even sells these still?

•Fortunately, not too rare, though gone from the
likes of DigiKey and Mouser.

But first, to eBay…

6/1/2024 v1.1 Marcus Engineering © 2024 31

To the lab, then.

µPD78F9202

Teensy 3.2

6/1/2024 v1.1 Marcus Engineering © 2024 32

•Fortunately, this chip keeps comms real simple.
• Send a command byte.
• Send some parameters.
• Get a status byte.
• Send data?

• Get status, repeat?
• Get another, final

status byte.

Command Format

Maybe more data
and status here

6/1/2024 v1.1 Marcus Engineering © 2024 33

•B0 00 00 FF
• Checksum, block 0, start addr. 0, end addr. FFh.

•Does it work?

•Yes!
• Ok, comms are working.

Testing the Checksum Command

6/1/2024 v1.1 Marcus Engineering © 2024 34

• The checksum output is a
function of a data input.

• We’d like to learn that data from
looking at the checksum.

• There are many, many more
inputs than there are outputs.

• So, more than one input can
result in any given output.

• So knowing the output doesn’t
tell us which input is actually
present!

Pigeonhole Principle

Source: Wikipedia;
Pigeons-in-holes.jpg by en:User:BenFrantzDale; this image by en:User:McKay

6/1/2024 v1.1 Marcus Engineering © 2024 35

•Manual says we can only get the checksum of a
full 256-byte block.
• It’s not nothing!

•Only 16 bits* output for 2048 bits input.
• Pigeonhole principle rules out making any

meaningful guess about the overall page
contents just from that output.

Full block checksums only

*More like 12 bits…

2048b

0b16b

6/1/2024 v1.1 Marcus Engineering © 2024 36

•We can run every possible byte through the
checksum algorithm.
• And see which one results in that checksum!

•16 bits output uniquely identifies 8 bits input.
• 63356 possible outputs
• Only 256 possible inputs

If we had a single byte’s checksum…

8b

16b

0b

6/1/2024 v1.1 Marcus Engineering © 2024 37

•B0 00 00 00
• Checksum, block 0, start addr. 0, end addr. 0.

•Does it work?

•No.
• Only 00h – FFh works.

Checksum of a single byte

NACK “15h”

6/1/2024 v1.1 Marcus Engineering © 2024 38

•Perhaps we can learn some information by
looking at the CPU’s power consumption?

• Instrumented the ground return
path of the chip with a resistor
and a PC oscilloscope.

•Let’s look at the Checksum
processing.

Powerline analysis to the rescue!

Current Shunt

6/1/2024 v1.1 Marcus Engineering © 2024 39

•Can we tell the value of the data that the
checksum computation is processing?
• Somewhat, yes!

•How much can we tell?
• Only learn about 4 bits per byte.
• Not enough!

•Well, that’s hard stuff anyways.
Let’s keep playing with commands.

Powerline analysis to the rescue?

2048b

0b

1024b

6/1/2024 v1.1 Marcus Engineering © 2024 40

•We can’t do that directly
•How can we do it anyways?

• Imagine deleting everything except 1 byte.
• Then it’s really only a checksum of that byte.

•Could do that to 256 chips, or…

Single byte checksum works

8b

2040b

16b

6/1/2024 v1.1 Marcus Engineering © 2024 41

• Can delete the first 255 bytes.
• Then only 1 is unknown.
• Then we learn it from the checksum.

• Imagine undeleting the byte
before it…
• Still only 1 is unknown, now

we learn the next.
• And so on…

Delete and Undelete

6/1/2024 v1.1 Marcus Engineering © 2024 42

Burn Before Reading

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

Flash Checksums

6/1/2024 v1.1 Marcus Engineering © 2024 43

00h

00h

00h

00h

00h

00h

00h

00h

0361h

17E8h

124Bh

1CAEh

07A6h

112Ah

113Bh

112Ah

Burn Before Reading

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??Write 0 Checksum

6/1/2024 v1.1 Marcus Engineering © 2024 44

88h

77h

66h

55h

44h

33h

22h

11h

??

??00h

00h

00h

00h

00h

00h

00h

0361h

17E8h

124Bh

1CAEh

07A6h

112Ah

113Bh

112Ah

Burn Before Reading

Reverse C’sum

Except, over
256 bytes.

6/1/2024 v1.1 Marcus Engineering © 2024 45

• We know the flash contents if we write it ourselves.
• Programming command can set any 1 to a 0, and can

operate on less than a full block.
• We can progressively zero out bytes.

• Zero a byte, read and save the checksum. Repeat.
• End up with 256 stored checksums and fully zeroed flash.
• Working backwards, only 8 bits at a time are unknown,

so a byte can be learned.
• Eventually, we learn the contents of the whole block!

Burn Before Reading

6/1/2024 v1.1 Marcus Engineering © 2024 46

•Only really get one shot at this.
• Per lock, at least…

•Made our Teensy tool run the checksum three
times and make sure all three match, before
deleting the next byte.

•Serial output from the tool was routed to a
logging Tera Term session.

Kind of risky…

6/1/2024 v1.1 Marcus Engineering © 2024 47

• It works on our test chips!
•Now to test the real thing!
•We issue the chip erase command…

• Whoops!
• Turns out it also erases $100…

MVP, finally dumping the memory!

again…

6/1/2024 v1.1 Marcus Engineering © 2024 48

•Received a new lock and didn’t run chip erase.
•And the attack… immediately doesn’t work.

• Our chip has writing disabled…
• Would have checked that, but, we chip erased the

last one, including its security bits.

•We need a new plan…

Dumping the memory (part two)

6/1/2024 v1.1 Marcus Engineering © 2024 49

RTFM Part 3:
Revenge of the App Note
Can’t write, right?

6/1/2024 v1.1 Marcus Engineering © 2024 50

•Chip Erase
•Block Erase
•Chip/Block Erase Verify
•Programming
• Internal Verify
•Checksum
•Security Set

Time for a new plan…
What other
commands interact
with the memory?

6/1/2024 v1.1 Marcus Engineering © 2024 51

What about Program?

Data byte to
be written

Ack “If Write
Successful”

6/1/2024 v1.1 Marcus Engineering © 2024 52

What happens if we try?

Data byte to
be written Nak here

Ack here

Because writing is disabled..?

6/1/2024 v1.1 Marcus Engineering © 2024 53

Let’s take a closer look at
the datasheet…

How might this be implemented?

6/1/2024 v1.1 Marcus Engineering © 2024 54

•“Write data received but write error”

•“Write data received error and write error”

•“Write data received error but write OK”

Weirdly specific errors

How does this happen?

No error for “security bit set”…

6/1/2024 v1.1 Marcus Engineering © 2024 55

• IC designers are lazy efficient
•Every bit of logic takes up space, and

Space = Money

•No more logic than absolutely required to
implement what’s in the datasheet.

•How would you implement this command?

What’s going on inside the chip?

6/1/2024 v1.1 Marcus Engineering © 2024 56

•Command has three steps

Educated Guess

Step 1:
Receive the command

Step 2:
Receive and write a data byte to memory

Step 3:
Verify the data byte was written correctly

6/1/2024 v1.1 Marcus Engineering © 2024 57

How could write protect work?

Step 1:
Receive the command

Step 2:
Receive and write a data byte to memory

Step 3:
Verify the data byte was written correctly

You could block the
programming command…

Or you could block the actual
programming process

How do we know?

We get an ACK for the
command…

Error says:
“Write data received but write error”

6/1/2024 v1.1 Marcus Engineering © 2024 58

•Step 3 must read the actual byte in flash and
compare to the received data

•How can we exploit this?

Hypothesis
Step 3:

Verify the data byte was written correctly

6/1/2024 v1.1 Marcus Engineering © 2024 59

• If we program a byte to the value we already
know it is, we get an ACK!

What if we program the same data?

6/1/2024 v1.1 Marcus Engineering © 2024 60

Pouring out
the Memory

6/1/2024 v1.1 Marcus Engineering © 2024 61

•Attempt to write 00h to the first address
• If NAK then try the next value (01h, 02h, etc…)
• If ACK then that’s the real value!

How does it work?

6/1/2024 v1.1 Marcus Engineering © 2024 62

•Attempt to write 00h to the first address
• If NAK then try the next value (01h, 02h, etc…)
• If ACK then that’s the real value!
• Move to next byte…

How does it work?

gif

6/1/2024 v1.1 Marcus Engineering © 2024 63

•We gotta disassemble the code…
• To reveal the secrets inside

•Aaaaand we gotta make our own tools…
• No one has a disassembler for this 40 year old part

Now what?

6/1/2024 v1.1 Marcus Engineering © 2024 64

Making ISA Machine Readable

6/1/2024 v1.1 Marcus Engineering © 2024 65

Disassembling, then deciphering

6/1/2024 v1.1 Marcus Engineering © 2024 66

•You can find our disassembler here:
• https://github.com/pixelfelon/78k0s-dasm

•And the flash dump code is here:
• https://github.com/pixelfelon/78k0s-dumper

Sharing is caring

https://github.com/pixelfelon/78k0s-dasm
https://github.com/pixelfelon/78k0s-dumper

6/1/2024 v1.1 Marcus Engineering © 2024 67

Special thanks to the Renesas PSIRT, they were
very responsive to our disclosure.

6/1/2024 v1.1 Marcus Engineering © 2024 68

And questions!

6/1/2024 v1.1 Marcus Engineering © 2024 69

The Device

	Teaching New Tricks to an Old Micro
	Outline
	Who Are We?
	How did we get on this topic?
	Researching Safe Locks
	What’s our first move?
	Teardown Time
	Where’s the microcontroller?
	Quick PCB Reverse Engineering
	Now to get the firmware.
	RTFM
	Flash Memory Programming
	How do we dump the code?
	What would we normally do?
	Time for a closer read of the programming guide…
	RTFM Part 2:�Attack of the Datasheet
	So there’s no read command.
	What commands do we have?
	Write/Programming
	Security Set
	Internal Verify
	Block Erase
	Chip Erase
	Block Blank Check (Block Erase Verify)
	Chip Blank Check (Chip Erase Verify)
	Checksum
	Checksum command looks promising.
	To the lab!
	How to test this?
	But first, to eBay…
	To the lab, then.
	Command Format
	Testing the Checksum Command
	Pigeonhole Principle
	Full block checksums only
	If we had a single byte’s checksum…
	Checksum of a single byte
	Powerline analysis to the rescue!
	Powerline analysis to the rescue?
	Single byte checksum works
	Delete and Undelete
	Burn Before Reading
	Burn Before Reading
	Burn Before Reading
	Burn Before Reading
	Kind of risky…
	MVP, finally dumping the memory!
	Dumping the memory (part two)
	RTFM Part 3:�Revenge of the App Note
	Time for a new plan…
	What about Program?
	What happens if we try?
	How might this be implemented?
	Weirdly specific errors
	What’s going on inside the chip?
	Educated Guess
	How could write protect work?
	Hypothesis
	What if we program the same data?
	Pouring out the Memory
	How does it work?
	How does it work?
	Now what?
	Making ISA Machine Readable
	Disassembling, then deciphering
	Sharing is caring
	Slide Number 67
	Demo!
	The Device

