Marcus ,&ﬁ

Engineering

Teaching New Tricks to an Old Micro

Breaking into Chips By Reading the Datasheet

Hardwear.io USA 2024
wear io

‘ Marcus f’ﬁf”x
OUtI Iine Engineering

*Overview

* Approach & Why This Part
* Reading The Manual
*Exploit 1: Checksums
*Exploit 2: Programming
*Demo

Marcusﬁﬁ

Engineering

Mark Omo
Who Are We?

* Leads the Engineering team at Marcus Engineering

e Expertin hardware and embedded security

e Background in regulated device design in the Medical,
Industrial, Aerospace, and Consumer market segments

* Former System Engineering Lead at Google
James Rowley

e Leads security programs at Marcus Engineering
* Expertin disassembly and embedded security

e Background in regulated device design in the Medical,
Industrial, Aerospace, and Consumer market segments

e Couldn’t be bothered to update his headshot

6/1/2024 v1l.1 Marcus Engineering © 2024 3

Marcus %%

Engineering

How did we get on this topic?

Researching Safe Locks Marcs

Doing some security
research on a popular
model of low-end
electronic safe lock from
a major brand.

Need its firmware!

6/1/2024 vl.1 Marcus Engineering © 2024 5

Marcus f’ﬁf”x

Engineering

What’s our first move?

Teardown Time Marcus 7t

6/1/2024 vl.1 Marcus Engineering © 2024 7

Where’s the microcontroller? E”nagffn“esem

Luckily they
labeled it!

AL 'L\

i'.',El

6/1/2024 v1l.1 Marcus Engineering © 2024 8

Marcusﬁﬁ%

Quick PCB Reverse Engineering Engineering

Side note:

They labeled every
component with a
part number

Partis a

NEC Renesas eV =R e TR
e L Ul 9;1?35;'""04BK‘:7_““-1---: [

uPD78F9202 = p LDers—yf

6/1/2024

Marcus f’ﬁf”x

Engineering

Now to get the firmware.

Marcusﬁﬁ%

Engineering

RENESAS RENESAS
User’s Manual Application Note
78K0S/KU1+ 78K0S/Kx1+
8-Bit Single-Chip Microcontrollers 8-Bit Single-Chip Microcontrollers

Flash Memory Programming (Programmer)

4PD78F9200 4PD78F9201 uPD78F9202 4PD78F9200

uPD78F9500 4PD78F9501 uPD78F9502 4PD78F9201
(PD78F9202
4PD78F9210
4PD7T8F9211
4PD78F9212
4PD78F9221
(PD78F9222
/PD78F9232
4PD78F9234

Document No. U18172EJ3VOUD00 (3rd edition)

Dale Published Noverber 2009 NS

Document No. L17470FJVOANDD (4th editian)
@ HEC Eleetranics Corporation 2006 Dale Published Saplomber 2006 NS CP(K)
Printed in Japan

©NEC Blectronies Corporation 2005

Printed in Japan

What secrets could it hold?

6/1/2024 v1l.1 Marcus Engineering © 2024 11

Flash Memory Programming Marcus PYY

* Fortunately, NEC carefully documented the flash
programming protocol.
* Entry, commands, params, etc.

*The necessary pins are already
broken out to a header, too.

*Programmed a Teensy to do the half-duplex
single-line UART communication and setup.

6/1/2024 vl.1 Marcus Engineering © 2024 12

How do we dump the code? Marcus

*Get it into programming mode, and...

(Device) POC f / §| \ ii Command Command Name
-»E:l-n- i No.
— i 10 i
RESET ii /./ 20H Chip Erase
i Tow e
DGCLK I_I-»:M—TB 'IIIII|IIIII|IIIIIIIII|III|I|IIIII|I|III|IIIIIIIII|I|I
T1 >
DGDATA T2 I-H—I |—l I—l |—| T4 i n_m l—‘ u “_ 30H Chip Erase Verify
-D‘ r-l— | _P l
T1 T6 T7 T8 T 11x T9 22H Block Erase
—D_ Clock pulse Command frame data
(High — Low — High) (Programmer — 78K0S/Kx1+) 39H Block Erase Verif
—[[[[l]]— _ D_ Status code Y
Continuous clock pulse (78K0S/Kx1+ — Programmer) 40H Programming
) o 14
° h t h d d 19H Internal Verif
an, theres no red commanada. niomal Verly
BOH Checksum
40H Security set

What would we normally do? Marcus PYY

* On the typical micros we work with:
* There is a read command
* Or at least a debugging interface

* Those are good glitch targets to bypass security

 However, this micro is not = =
nearly that advanced.) WENEED TO GO

»
s

DEEPER _ »

6/1/2024 vl.1 Marcus Engineering © 2024 14

Marcus f’ﬁf’x

Engineering

Time for a closer read of the
programming guide...

RTFM Part 2:
Attack of the Datasheet

Marcus fxﬁf{%

Engineering

RENESAS
Application Note

78K0S/Kx1+

8-Bit Single-Chip Microcontrollers

Flash Memory Programming (Programmer)

4PD78F9200
4PD78F9201
4PD78F9202
4PD78F9210
4PDT8F9211
4PD78F9212
4PDTBF9221
4PD78F9222
4PD78F9232
4PD78F9234

Document No, U17470FJAVOANDO (4ih edition)
Dale Published Soplomber 2006 NS CF(K)

@ NEC Electionics Corporation 2005
Printed in Japan

So there’s no read command. Marcus 7t

*\What else can we look for?

e Looking for anything that interacts with the flash
* Can we gain insight about that’s inside?

* What data might unintentionally be leaked?

What commands do we have? Marcus 7t

*Chip Erase

*Block Erase

* Chip/Block Erase Verify
*Programming
*Security Set

*|nternal Verify

* Checksum

Write/Programming

Marcusf)ﬁf)’x

Engineering

* \Writes data.

* That’s a real flash write,
so can only change
1’s to O’s.

*We don’t particularly
want to overwrite the
data.

4.7 Write Processing

4.7.1 Description
This processing is to write a user program to the flash memory in block (256 bytes) units by executing the
Programming command. After that, the Internal Verify command is executed to check the write level.

4.7.2 Basic command frame
The basic command frames of the two commands executed for write processing are as shown in Figures 4-17 and

4-18.

Figure 4-17. Programming Command Frame

Field Command Block Offset Last address
Value 40H Block number™™ 00H FFH

Figure 4-18. Internal Verify Command Frame

Field Command Block Offset Last address

Value 19H Block number™* 00H FFH

Note The value valid as a block number differs as follows depending on the flash memory size.

<Flash memory size=> <Block number>
1KB 00H to 03H
2KB 00H to 07H
4 KB 00H to OFH
B KB 00H to 1FH

The block number of the Internal Verify command must be the same as the block number of the
Programming command.

Security Set

Marcusf’ﬁf)’x

Engineering

* Writes data to the special
security byte.

* That’s a real flash write, so
can only change 1’s to O’s.

* Weird, it’s the same
command byte as for
Programming...

e We don’t particularly want

to activate more security.

4.8 Security Setting Procedure

4.8.1 Description
This processing is to set security flags that protect the data of the flash memory from illegal access by a third party.
There are three types of security flags: write prohibit, block erase prohibit, and chip erase prohibit flags.
To set security flags, execute the Security set and Intermal Verify commands in succession.
The set security flags become valid after the flash memory programming mode is cleared and then set again.

4.8.2 Basic command frame
The basic command frames of the two commands executed for security setting processing are as shown in Figures
4-21 and 4-22.

Figure 4-21. Security set Command Frame

Field Command Block I Offset l Last address ‘

Value 40H B80H 00H 00H

Figure 4-22. Internal Verify Command Frame

Field Command Block Offset Last address

Value 19H BOH 00H 00H

Figure 4-23. Security Data (1 Byte Only)

7 6 5 4 3 2 1 0
Security ‘ 1 ‘ 1 ‘ PR5 ‘ PR4 ‘ PR3 ‘ PR2 PR1 ‘ PRO ‘

After the Security set command has been executed, security flags are set in accordance with security data, and
executing the Programming, Chip Erase, and Block Erase commands is prohibited depending on the set values of the
security flags. The security flags are initialized when the chip is erased. Execution of all the commands is enabled
again when the security flags have been initialized. If it is set to prohibit erasing the chip, however, neither the
security flags nor the flash memory can be initialized. It is recommended to take measures so that the setting of the
security flags can be checked before the flags are set.

Internal Verify

Marcus f’ﬁf’x

Engineering

* Run after Programming or
Security Set command.

* Maybe checks if all bytes
match what was sent.

* | don’t think there’s a write
buffer, though.

* Or maybe checks analog
write level somehow.

e Can’t send it data to verify,

it just does its thing.

“Checks the write level of a specified block.”

4.8.2 Basic command frame
The basic command frames of the two commands executed for security setting processing are as shown in Figures
4-21 and 4-22.

Figure 4-21. Security set Command Frame
dddddddddddd Block ’ Offset I Last address ‘
Value 40H 80H 00H 00H

Figure 4-22. Internal Verify Command Frame

Field | Command | Block | ~ Offset | Lastaddress

4.7.2 Basic command frame
The basic command frames of the two commands executed for write processing are as shown in Figures 4-17 and
44444

Figure 4-17. Programming Command Frame

Fielb | ~ Command | Block

Block Erase

Marcusf)ﬁf)’x

Engineering

e Erases a block of flash.
e Don’t want to do that.

* Could this erase security bits

independently?
* Notice that after Chip Erase,
you’re supposed to send Block

Erase Verify for block 80h.

* Does 80h correspond to the
security bits?

e Still, there’s no disabled read
command for us to get.

“Checks the erasure level of the entire flash memory.”

4.6 Block Erase Processing

4.6.1 Description
This processing is to erase a block of the flash memory of a specified block number.
ession

in
To erase a block, execute the Block Erase and Block Erase Verify commands in succ

4.6.2 Basic command frame
The basic command frames of the two commands executed for block erase processing are as shown in Figures 4-

13 and 4-14.
Figure 4-13. Block Erase Command Frame
Field Comman d Block Offset Last address
Block number™ 00H FFH

Value

Note The value valid as a block number differs as follows depending on the flash memory size.

<Flash memory size> <Block number>

1 KB 00H fo 03H
2KB 00H to O7H
4 KB 00H to OFH
8 KB 00H to 1FH
Figure 4-14. Block Erase Verify Command Frame
Field Comman d Block Offset Last address
Block number** 00H FFH

Value
e as the block number of the Block

Note The block number of the Block Erase Verify command must be the sam

Erase command.

Chip Erase Mt

4.5 Chip Erase Processing

. 4.5.1 Description
ra S e S a a S This processing is to erase the entire flash memory (chip).
e

All the information set by the Security set command can also be initialized.
However, chip erase cannot be executed when erasing the chip is prohibited.
To execute chip erase processing, execute the Chip Erase, Chip Erase Verify, and Block Erase Verify commands

* Including security bits.

452 Basic command frame
The basic command frames of the three commands executed for chip erase processing are as shown in Figures 4-
8 to 4-10.

Figure 4-8. Chip Erase Command Frame

Field Command Block Offset Last address

*Oddly, you have to tell it = = ==

Figure 4-9. Chip Erase Verify Command Frame

[]
how many blocks it has? = b e 1 o 1 e
L Value 30H Maximum block number™™* 00H FFH

Note The value valid as the maximum block number differs as follows depending on the flash memory size.

* Maybe exploitable?

2KB 07H
4 KB OFH

e Still, don’t want to erase

Figure 4-10. Block Erase Verify Command Frame

[]
a I lyt I I lg Field Command Block Ofiset Last address
(]

Value 32H 80H (fixed) 00H FFH

6/1/2024 vl.1 Marcus Engineering © 2024 23

Block Blank Check (Block Erase Verify) Marcus 7t

’ Ch ec kS If d b | OC k was “Checks the erasure level of a specified block.”
e ra S e d ° 4.4 Block Blank Check Processing

. 4.4.1 Description
. This processing is to check whether the data of the block of the flash memory of a specified block number has
a y ‘ C ‘ C S I a y ‘ S been erased by execution of the Block Erase Verify command.

4.4.2 Basic command frame

M])
a r e I O g I (: a I S O r The basic command frame of the command executed for block blank check processing is as shown in Figure 4-5.
' [N]

Figure 4-5. Block Erase Verify Command Frame

* Maybe checks analog = e —
v 32H B 00H FFH
e ra S e I e Ve I S O m e h O W Note The value valid as a block number differs as follows depending on the flash memory size.
[} <Flash memory size> <Block number=

1KB 00H to 03H
2KB 00H to 07H

* Best case, can tell us if a i oxory
whole block is blank.

Chip Blank Check (Chip Erase Verify) I,;/r‘%fnuesem

*Checks if the whole chip
was erased.

- 4.3.1 Description
. This processing is to check whether the data has been erased from the entire flash memol
a y e C e C S I a y e S To execute chip blank check processing, execute the Chip Erase Verify command,

° ' 4.3.2 Basic command frame
a re I O g I C a I 1 S O r Figures 4-2 shows the command frame executed for chip blank check processing.
' [N
Figure 4-2. Chip Erase Verify Command Frame
. IVI a y b e C h e C kS a n a I Og Field Command Block Offset Last address
VVVVV 30H Maximum block number*™ 00H FFH

e ra S e I e V e I S O m e h O W Note The value that is valid as the maximum block number differs as follows depending on the flash memory size
[] <Flash memory size= <Block number>
1KB 03H
2 KB 07H

e Best case, can tell us if
the whole chip is blank.

* Hopefully, it isn’t...

Checksum

Marcusﬁﬁ

Engineering

* Computes the checksum
of one or more blocks.
*So it’s reading the flash!

* Only works on blocks...
but you can specify the
start and end address?

*This might work.

4.9 Checksum Processing

4.9.1 Description

This processing is to receive the checksum data of an area from block 0 to a specified block.

As a checksum value, the lower 2 bytes of an operation result are transmitted from the 78K0S/Kx1+ in the order of
lower byte, then higher byte.

4.9.2 Basic command frame
The basic command frame of the command executed for checksum processing is as shown in Figure 4-26.

Figure 4-26. Checksum Command Frame

Field Command Block Offset Last address

Value BOH Block number™* 00H FFH

Note The value valid as a block number differs as follows depending on the flash memory size.

<Flash memory size> <Block number>
1 KB 00H to 03H
2KB 00H to O7H
4 KB 00H to OFH
8 KB 00H to 1FH

4.9.3 Normal termination
Checksum data of the lower 2 bytes of an operation result is received. The lower byte and the higher byte of the
checksum data are received in that order.

4.9.4 Abnormal termination
If a parity error occurs, NACK is returned, and checksum processing is terminated.

6/1/2024 vl.1 Marcus Engineering © 2024 26

Checksum command looks promising. Marcus %3

*We can get the checksum of each block.
* That’s something.

*Could we get the checksum of each byte?

-

\

6/1/2024 vl.1 Marcus Engineering © 2024 27

Marcus f’ﬁf”x

Engineering

To the lab!

How to test this? Marcus 7t

Figure 3-2. Timing of Changing Mode to Flash Memory Programming Mode
(When Mode Is Set and Command Is Executed)

* This chip needs some special
inputs to get into programming ... / *

mode, in a sequence:

...................................

+ Power o
* DGCLK pulse :
* DGDATA pulse LS B

* DGCLK input clock R

* Only after all of this is DGDATA x T
use d as a U A RT pl n. Continuous clock pulse B 78108+ —» Programmen
*So we’ll write an Arduino program to handle all that.

* Then may as well implement the commands there too.

But first, to eBay...

Marcusfxﬁﬁ

Engineering

*\Who even sells these still?

1PCS UPD78F9202MA-CAC-A
v’ MSOP-10 UPD78F9202 9202 NEW

jzmain inly (216)
' 96.9% p sitive - Seller's other items - Contact
seller

US $3.99

or Best Offer

Condition: New

Quantity: More than 10 available / 5 sold

Shipping: US $2.99 SpeedPAK Standard. See
details
International shipment of items may be

* Fortunately, not too rare, though gone from the

likes of DigiKey and Mouser.

6/1/2024 vl.1 Marcus Engineering © 2024

30

To the lab, then. Marcus P74

Teensy 3.2

UPD78F9202

6/1/2024 vl.1 Marcus Engineering © 2024 31

Command Format Marcus 7t

* Fortunately, this chip keeps comms real simple.
* Send a command byte.
* Send some parameters.
Maybe more data

° Get g status byte and status here
*Send data?

* Get status, repeat? i ﬁ_fr‘___‘uﬁﬂ
* Get another, final 6 T T THx T9
-m- Command frame data
status byte (Programmer — 78K0S/Kx1+)

‘D‘ Status code
(78K0S/Kx1+ — Programmer)

Testing the Checksum Command I’é/r‘%fnuesem

* B0 00 00 FF
 Checksum, block O, start addr. O, end addr. FFh.

e Does it work?

Figure 4-28. Timing Chart of Checksum Processing

DGDATA “BOH” iiooH” ::OoHu “FFH” “OBH”
| | | I I | | | |
Checksum: | Block ! I Last | ! ACK= |
| command {—-! number a—p Offset g pi address ia—p «ggH” lw—
I -I-7 I I T? I I T7 I I -I-8 I I T12

*Yes!
* Ok, comms are working.

Pigeonhole Principle Marcus PY%

* The checksum output is a
function of a data input.

e We'd like to learn that data from
looking at the checksum.

* There are many, many more
inputs than there are outputs.

* S0, more than one input can
result in any given output.

* So knowing the output doesn’t
tell us which inputis actually .- s o
prese nt! Source: Wikipedia;

Pigeons-in-holes.jpg by en:User:BenFrantzDale; this image by en:User:McKay

- 1 el

6/1/2024 v1l.1 Marcus Engineering © 2024 34

Full block checksums only Marcus PYY

* Manual says we can only get the checksum of a
full 256-byte block.

* |lt’'s not nothing!

Only 16 bits output for 2048 bits input.

* Pigeonhole principle rules out making any
meaningful guess about the overall page
contents just from that output.

16b
— Ob

. . /
*More like 12 bits... o 0”47,%/("0%
n

If we had a single byte’s checksum... Marcus PYY

*\We can run every possible byte through the
checksum algorithm.

* And see which one results in that checksum!

*16 bits output uniquely identifies 8 bits input.

* 63356 possible outputs
* Only 256 possible inputs b

Ob

ngy Uny
(o]
o '{'/70[10) [.1,,)

Checksum of a single byte Marcus PYY

*BO 00 00 00
* Checksum, block O, start addr. 0, end addr. O.

e Does it work?

Figure 4-28. Timing Chart of Checksum Processing

DGDATA “BOH” “OOH” ::OoHu “OoH” “OGH”
ChecksumI I Block I I I I Last I
oc
° NO command I<—>I number I«l—»' Offset g address ia—p —
I I T7 I I T7 I I TS I | T12

* Only 00h — FFh works NACK “15h"

Powerline analysis to the rescue! Marcus

* Perhaps we can learn some information by
looking at the CPU’s power consumption?

*|Instrumented the ground return
path of the chip with a resistor
and a PC oscilloscope.

eLet’s look at the Checksum
processing.

Current Shunt

6/1/2024 vl.1 Marcus Engineering © 2024

Powerline analysis to the rescue? Marcus

*Can we tell the value of the data that the
checksum computation is processing?

* Somewhat, yes!

* How much can we tell?
* Only learn about 4 bits per byte.
* Not enough!

* Well, that’s hard stuff anyways.
Let’s keep playing with commands. o

Single byte checksum works Marcus oy

*We can’t do that directly
*How can we do it anyways?

*|magine deleting everything except 1 byte.
* Then it’s really only a checksum of that byte.

* Could do that to 256 chips, or...

16b 8b
0 ==

Delete and Undelete E”nagffn“éem

* Can delete the first 255 bytes.

* Then only 1 is unknown.
e Then we learn it from the checksum.

WHEN YOU REALIZE\YOU GAN DELETE
AND UNDELETE BYTESTO LEARN THE GHECKSUM®=

V=1

* Imagine undeleting the byte
before it...

e Still only 1 is unknown, now
we learn the next.

e And so on...

6/1/2024 vl.1 Marcus Engineering © 2024 41

Marcusf)ﬁf)’x

Burn Before Reading Engineering
2 ??
2 ??
2 ??
2 ??
Flash Checksums
2 ??
2 ??
2 ??
2 ??

Burn Before Reading Marcus PY%

? ??
?? ??
? ??
?? ??
? ??
? ??
?? ??
wieo » | SRS

6/1/2024 vl.1 Marcus Engineering © 2024 43

Marcusﬁﬁ%

Burn Before Reading Engineering

. o361

00h 17E8h

00h 124Bh

Except, over 00h 1CAEh

256 bytes.

00h 07A6h

00h 112Ah

00h 113Bh

00h 112Ah

6/1/2024 v1.1 Marcus Engineering © 2024 44

Burn Before Reading Marcus PY%

* We know the flash contents if we write it ourselves.

* Programming command can set any 1 to a 0, and can
operate on less than a full block.

* We can progressively zero out bytes.

e Zero a byte, read and save the checksum. Repeat.
* End up with 256 stored checksums and fully zeroed flash.

* Working backwards, only 8 bits at a time are unknown,
so a byte can be learned.

* Eventually, we learn the contents of the whole block!

Kind of risky... Mt

*Only really get one shot at this.
* Per lock, at least...

* Made our Teensy tool run the checksum three
times and make sure all three match, before
deleting the next byte.

*Serial output from the tool was routed to a
logging Tera Term session.

MVP, finally dumping the memory! Marcus PYY

*|t works on our test chips!
*Now to test the real thing!
*We issue the chip erase command...

* Whoops!
* Turns out it also erases S100... Af

6/1/2024 vl.1 Marcus Engineering © 2024 47

Dumping the memory (part two) Marcus PY%

* Received a new lock and didn’t run chip erase.

* And the attack... immediately doesn’t work.

* Our chip has writing disabled...

* Would have checked that, but, we chip erased the
last one, including its security bits.

* We need a new plan...

RTFM Part 3:
Revenge of the App Note

Marcus ﬁf{%

Engineering

RENESAS
Application Note

78K0S/Kx1+

8-Bit Single-Chip Microcontrollers

Flash Memory Programming (Programmer)

4PD78F9200
4PD78F9201
4PD78F9202
4PD78F9210
4PDT8F9211
4PD78F9212
4PDTBF9221
4PD78F9222
4PD78F9232
4PD78F9234

Document No, U17470FJAVOANDO (4ih edition)
Dale Published Soplomber 2006 NS CF(K)

@ NEC Electionics Corporation 2005
Printed in Japan

° Marcusf)ﬁf’(
Time for a new plan... Engineering
*Chip Erase What other

commands interact
* Block Erase with the memory?

* Chip/Block Erase Verify
*Programming

*|nternal Verify
* Checksum ﬂ

*Security Set L)

What about Program? i

Figure 4-20. Timing Chart of Write Processing

DGDATA nmn “MH““ umHn uFFHn "06””
i | I I | | | 1 | !
| Programming ! ! Block | | Offset : ! Last | ! ACK= |
jcommand | q—p! number a—-i OTTSC! lq—pe! address l@—b| “06H" |a—p-
I | T7 I I T !] T7 | " 18 I T9
llﬁ“ll HDGH" llaAHll umHu H4FHH “OBH ”
| L acke | Ul oacke || ' acKe |
I Data1 ! [= I Data2 ' = I Data3 ! [=
E E-H-i “06H" :.H.i :-H-i “06H" rH-i :-H-i “06H” :
T10 ''T9 ' T10 ''T9 ' T10 '

Ack “If Write

III

Data byte to
Successfu

be written

6/1/2024 vl.1 Marcus Engineering © 2024 51

What happens if we try? iIas

Figure 4-20. Timing Chart of Write Processing

DGDATA umn um”ullh noo“n uFFHn uoﬁHu
I | I I] I |] I
| Programming | i Block | \ Offset \ , Last | i ACK =
jcommand | g number || Sl L e—»| address | “06H”
I I TT I I T?] I T7 |] Ta I I Tg
uAsHll uoan llaAHll umﬂu u4FHH “O'SH ”
i | | ACK = | | " i ACK | " | | ACK I
1 Data1 [- I Data2 I = 1 Data3 I =
E :-H-I: iiUBH!! :-H-II :-H-II "BEH 1] ID-H-: :-H-II "DGH" :
"' T10 "'T9 ' "'T10 ''T19 ' "T10 ' '

Data byte to

. Because writing is disabled..?
be written

6/1/2024 vl.1 Marcus Engineering © 2024 52

How might this be implemented? Marcus PY%

Figure 4-19. Write Processing Flow (2/5)

Let’s take a closer look at T)
the datasheet...

Next status?

e \Write data received but write error

« Write data received error and write error |
e \Write data received error but write OK -

Weirdly specific errors Marcus oy

e “Write data received but write error”

How does this happen?
e “\WWrite data received error and write error”

e “\Write data received error but write OK”

6/1/2024

Interesting

What’s going on inside the chip? Marcus PYY

*|C designers are fazy efficient

*Every bit of logic takes up space, and
Space = Money

*No more logic than absolutely required to
implement what’s in the datasheet.

*How would you implement this command?

Educated Guess Marcus 7t

e Command has three steps

Step 1:
Receive the command

Step 2:
Receive and write a data byte to memory

Step 3:
Verify the data byte was written correctly

How could write protect work? Mt

You could block the
programming command... Step 1

Receive the command

Or you could block the actual
programming process Step 2-

Receive and write a data byte to memory

How do we know?
Step 3:
Verify the data byte was written correctly

Hypothesis Marcus

Step 3:
Verify the data byte was written correctly

*Step 3 must read the and
compare to the received data

*How can we exploit this?

What if we program the same data? E”nagffn“esem

*|f we program a byte to the value we already
know it is, we get an ACK!

6/1/2024 59

akeame merore|

Marcus ﬁf‘%

Engineering

Pouring out
the Memory

6/1/2024 vl.1 Marcus Engineering © 2024

How does it work? Marcus 7t

e Attempt to write O0h to the first address
* If NAK then try the next value (01h, 02h, etc...)
* If ACK then that’s the real value!

How does it work? Marcus 7t

e Attempt to write O0h to the first address
* If NAK then try the next value (01h, 02h, etc...)
* If ACK then that’s the real value!
* Move to next byte...

gif

Now what? Marcus 7t

> buy digital lock
> ook inside
> analog

* We gotta disassemble the code...
* To reveal the secrets inside

* Adaaand we gotta make our own tools...
* No one has a disassembler for this 40 year old part

6/1/2024 vl.1 Marcus Engineering © 2024 63

Making ISA Machine Readable Marcus

Exchange Word
XCHW Word Data Exchange
[Instruction format] XCHW dst, src 463 v class XCHWAXrp(Instruction):
) 464 nn IIXCHw AX, r‘p' mimn
[Operation] dst < src 465
[Operand] 466 mhemonic: ClassVar[str] = "XCHW AX, rp"
467 match: ClassVar[int] = @b11000000
Mnemonic Operand (dst, sro) 468 mmask: ClassVar[int] = @bl1110011
o 469 bytecount: ClassVar[int] =1
XCHW AX, rp ot
470 field_defs: ClassVar[Sequence["Field"]] = (field.Regl6(offset=2),)
Note Only when rp = BC, DE or HL
471 format: ClassVar[str] = "XCHW AX, {@}"
[Flag] 472
473 v def check fields(self) -> bool:
b AC cy 474 """Check that rp is not AX."""
475 rp = self.operands[self.field_defs[@]].val
476 if rp == Regl6.AX:
[Description] 477 return False
e The 1st and 2nd operand contents are exchanged. 478 else:
479 return True

[Description example]
XCHW AX, BC; The memory contents of AX register are exchanged with those of the BC register.

6/1/2024 v1l.1 Marcus Engineering © 2024 64

Disassembling, then deciphering Marcus PYY

.org 0082H
vec Reset: void vec Reset (void)
MOVW AX, #FEE2H ;0082 FO E2 FE {
MOVW SP, AX ;0085 E6 1C uchar * src;
CALL FUNiNOP ;0087 22 Fo 00 uchar * dst;
XOR A, A ;OOBA OA 43 uchar cnt:
MOV !FE92H, A ;008C E9 92 FE
MOV !FE93H, A ;00BF E9 93 FE SP = 0Ox
MOVW HL, #FEDSH ;0092 FC DB FE — .
P - * (uchar = 0;
MOV B, #2810 ;0095 O0A F7 28 . -
MOV A, #00H ;0098 OA F3 00 (uchar = U
label 009B:
MOV [EL], A& :009B EF // [0xFED8, OxFEFF] = { 0 };
INCW HIL :009C 8C dst = OxEFEDE;
DBNZ B, $009BH ;009D 36 FC cnt = 0x28;
MOVW HL, #0129H ;009F FC 29 01 do {
MOVW DE, #FEBGH ;0D0AR2 T8 B6 FE *(dst++) = 0;
label 00A5: } while(!--cnt)
MOVW AX, HL ;D0A5 DC
CMPW AX, #0129H ;00A6 E2 29 01 // no effect?
Bz S00BI1H ;00A9 3C 06 // this one is actually weird
Mov A, [HL] ;00AB 2F // init data at 0x0129.
MOV [DE], A ;00AC EB src = 0x0129;
INCW HL ;0D0RD 8C dst = OXFER6:
INCW DE JOOAE - BE while (src != 0x0120)
BR $00AS5H ;D0AF 30 F4 (
label 00R1:
MOVW HL, #FE94H ;00B1 FC 94 FE ¥(dst+) = *(sTCHt);
label 00BA: }
MOVW AX, HL ;00B4 DC
CMPW AX, #FEB6H ;00B5 E2 B6 FE // [0xFE94, OxFEB5] = { 0 };
BZ $00C1H ;00B8 3C 07 dst = Oxirod;
MOV A, #00I ;O00BA OA F3 00 while (dst != OxFERO)
MOV [HL], A ;00BD EF {
INCW HL ;O0BE 8C *(dst++) = 0;
BR $00B4H ;0D0BF 30 F3 }

6/1/2024 vl.1 Marcus Engineering © 2024 65

Sharing is caring Marcus PY%

*You can find our disassembler here:
* https://github.com/pixelfelon/78k0s-dasm

* And the flash dump code is here:
 https://github.com/pixelfelon/78k0s-dumper

6/1/2024 v1l.1 Marcus Engineering © 2024 66

https://github.com/pixelfelon/78k0s-dasm
https://github.com/pixelfelon/78k0s-dumper

Marcus f’ﬁf”x

Engineering

Special thanks to the Renesas PSIRT, they were
very responsive to our disclosure.

Marcusf’ﬁf)’x

Engineering

Demo!

And gquestions!

The Device Marcus 7t

6/1/2024 69

	Teaching New Tricks to an Old Micro
	Outline
	Who Are We?
	How did we get on this topic?
	Researching Safe Locks
	What’s our first move?
	Teardown Time
	Where’s the microcontroller?
	Quick PCB Reverse Engineering
	Now to get the firmware.
	RTFM
	Flash Memory Programming
	How do we dump the code?
	What would we normally do?
	Time for a closer read of the programming guide…
	RTFM Part 2:�Attack of the Datasheet
	So there’s no read command.
	What commands do we have?
	Write/Programming
	Security Set
	Internal Verify
	Block Erase
	Chip Erase
	Block Blank Check (Block Erase Verify)
	Chip Blank Check (Chip Erase Verify)
	Checksum
	Checksum command looks promising.
	To the lab!
	How to test this?
	But first, to eBay…
	To the lab, then.
	Command Format
	Testing the Checksum Command
	Pigeonhole Principle
	Full block checksums only
	If we had a single byte’s checksum…
	Checksum of a single byte
	Powerline analysis to the rescue!
	Powerline analysis to the rescue?
	Single byte checksum works
	Delete and Undelete
	Burn Before Reading
	Burn Before Reading
	Burn Before Reading
	Burn Before Reading
	Kind of risky…
	MVP, finally dumping the memory!
	Dumping the memory (part two)
	RTFM Part 3:�Revenge of the App Note
	Time for a new plan…
	What about Program?
	What happens if we try?
	How might this be implemented?
	Weirdly specific errors
	What’s going on inside the chip?
	Educated Guess
	How could write protect work?
	Hypothesis
	What if we program the same data?
	Pouring out the Memory
	How does it work?
	How does it work?
	Now what?
	Making ISA Machine Readable
	Disassembling, then deciphering
	Sharing is caring
	Slide Number 67
	Demo!
	The Device

