
Next-Gen Exploitation:
Exploring the PS5 Security

Landscape

 whoami

- @SpecterDev
- Security researcher with a focus on kernel and platform security
- Work on console security as a hobby
- Started with PS4 ~5 years ago
- Also co-host Dayzerosec podcast/media channel
- First time presenter

Agenda

- Where we were (PS4 exploitation)
- Attack surface, mitigations, post-exploitation

- Where we are now
- Reduced attack surface
- Enhanced mitigations
- Hypervisor-based security

- Hypervisor analysis
- Overview on security co-processor(s)
- Future research and ideas

Notes

- There won’t be 0days / non-public bugs
- Mainly a reversing-focused talk with a few exploits & techniques
- We’ll focus on kernel, hypervisor, and post-exploitation

- Mostly x86
- Virtualization
- Memory Management
- Paging

Notes

- For userland stuff, check out theflow’s talk from 2022 hardwear.io
USA

- “bd-jb: Blu-ray Disc Java Sandbox Escape”

https://www.youtube.com/watch?v=jyyCOoWksbg

Where we were
The PlayStation 4

Where we were - PS4 Attack Surface

- Runs a modified FreeBSD 9.0
- Core & networking are mostly

untouched
- Some drivers were modified/added
- ~ 150 custom syscalls added

- No legacy syscalls

Where we were - PS4 Attack Surface

- Applications are isolated to sandboxed filesystem
- No syscall filtering

- Ad-hoc permission checking inside syscalls
- Custom syscalls were a source of bugs

- Most notably the 4.05FW “namedobj” bug disclosed by fail0verflow
- Type confusion yielding arbitrary free
- With infoleak could be used to jailbreak

Where we were - PS4 Attack Surface

- Browser/games had access to privileged drivers
- eBPF

- 4.50 FW Bug (qwertyoruiopz)
- Set filter & write race condition yielding use-after-free (UAF)

- 5.05 FW Bug (qwertyoruiopz)
- Set filter race condition yielding double free

- Raw sockets
- 6.72 FW Bug (theflow)

- IP6_EXTHDR_CHECK double free

https://github.com/Cryptogenic/Exploit-Writeups/blob/master/FreeBSD/PS4%204.55%20BPF%20Race%20Condition%20Kernel%20Exploit%20Writeup.md
https://github.com/Cryptogenic/Exploit-Writeups/blob/master/FreeBSD/PS4%205.05%20BPF%20Double%20Free%20Kernel%20Exploit%20Writeup.md
https://hackerone.com/reports/943231

Where we were - PS4 Attack Surface

- Custom drivers were also a source of bugs
- 9.00 FW Bug “pOOBs4” (reported by theflow)

- Integer truncation yielding heap Out-of-Bounds (OOB) write
- Exploitable via maliciously formatted USB drive

- Steadily been improving on both PS4 and by extension PS5
- 6.xx firmwares made huge leaps

- Various drivers like USB were removed and syscall permission
checking was tightened up

https://hackerone.com/reports/1340942

Where we were - PS4 Mitigations

- Had weak mitigations even for the time it launched (2013)
- No Address Space Layout Randomization (ASLR) at launch

- Enabled in 2.xx
- No Supervisor Mode Access/Execution Prevention (SMAP/SMEP) for

its lifespan
- Userland memory access from ring0 is allowed

- JIT memory was accessible to browser due to logic bug until 2.xx FW
- Didn’t even have to ROP < 2.xx

Where we were - PS4 case study “pOOBs4”

Where we were - PS4 case study “pOOBs4”

- Gave a one-shot out-of-bounds write into kernel heap
- Contents were controlled
- But not flexible

- From USB filesystem table data

Where we were - PS4 case study “pOOBs4”

- Full chainable without info disclosure due to weak mitigations
- No SMAP -> objects can be faked in userspace
- Don’t even need to deal with kASLR

- Code execution achieved with knote function pointer hijack

https://github.com/ChendoChap/pOOBs4/

Where we were - PS4 Post-Exploitation

- After code exec or kernel R/W, nothing stops you from patching
whatever you want to run homebrew

- Secure Access Management Unit (SAMU) handled signing/encryption
- But the kernel API could be patched to decrypt & verify w/ custom keys
- System could be used as a decryption oracle for libraries, games, etc.

- Only certain firmware was protected from this, and mostly irrelevant
for homebrew

Where we are
The PlayStation 5

Where we are - PS5 Attack Surface

- Based off FreeBSD 11.0
- Inherits sandboxing improvements made over time to PS4

- As well as improvements made by FreeBSD to kernel core
- When PS5 was announced, Sony launched an H1 bug bounty

- Huge step forward for killing easier bugs
- Binaries show evidence of supporting Address Sanitization (ASAN)

and fuzzing
- Overall a more mature codebase

Where we are - PS5 Mitigations

- ASLR and SMAP/SMEP have been enforced since launch
- Kernel also has software Control Flow Integrity (CFI)

- Makes faking objects difficult
- Also makes code execution post-R/W more annoying

- Bypassable post-R/W on earlier kernels
- CFI enforce variable was in data segment and writable
- This was fixed sometime in 3.xx kernels

- Backward-edge control flow is not protected, but…

- eXecute-Only Memory (XOM) / “xotext” mitigate ROP ability
- Gadgets are difficult to get and may need to be brute forced
- Hinders reverse engineering efforts pretty significantly

- XOM is enforced both in userspace and kernel

Where we are - PS5 Mitigations

Where we are - PS5 Mitigations

NX kASLR SMAP/SMEP kCFI XOM

PS4

PS5

Where we are - PS5 case study “pOOBs4”

- SMAP/SMEP
- We can no longer fake in userspace

- kCFI
- Have to be careful overwriting function pointers

- Impossible to exploit without separate infoleak
- Still challenging as USB filesystem would have to be rewritten at runtime

to account for kASLR
- The bar for suitable bugs has been raised substantially

Where we are - PS5 case study IPV6 race UAF

Where we are - PS5 case study IPV6 race UAF

- theflow reported a race condition yielding UAF in
IPV6_2292PKTOPTIONS sockopt for INET6 sockets

- Impacted PS4 <= 7.02 FW
- Fixed before PS5 was released
- By some miracle, was re-introduced into PS5 3.xx FW via regression
- Powerful bug that could be used derive infoleak
- Works from 3.00 to 4.51 FW

https://hackerone.com/reports/826026
https://hackerone.com/reports/826026

Where we are - PS5 case study IPV6 race UAF

- theflow implemented this with his bd-j chain he detailed last year
- Bypassed XOM as native code execution via java was free

- End of 2022 I implemented a (blind to kernel) exploit in WebKit
- Webkit ROP gadgets were obtained from an anonymous source who

broke PS5 kernel previously
- Without a dump for at least one FW, likely wouldn’t have been possible

- But gadgets can be bruteforced to port across FW

https://github.com/Cryptogenic/PS5-IPV6-Kernel-Exploit

Where we are - PS5 case study IPV6 race UAF

- PS5 exploit strategy was much the same as PS4
- Infoleak could be derived via overlapping packet info with kqueue

- Read routing header to dump pointers
- Arbitrary R/W was similarly achievable

- Set up fake packet info in kernel space with routing header
- Use packet opts as R/W gadget

Where we are - PS5 case study IPV6 race UAF

- No need to fake objects or execute in userspace
- Bypass SMAP/SMEP

- Derived infoleak means kASLR can be bypassed immediately
- God-tier bug, shouts to theflow

Where we are - PS5 Post-Exploitation

- Post-exploitation is where PS5 looks really different from PS4
- Takes advantage of AMD Secure Virtualization (SVM)

- AMD technology for hardware-backed virtualization
- Hypervisor is a secure monitor and nannies the kernel

- Intercepts various sensitive actions from the guest kernel
- Basically Virtualization-Based Security for console

Where we are - PS5 Post-Exploitation

- Idea is kernel code integrity cannot be broken without hypervisor
bug/bypass

- Kernel code execution is made more difficult
- XOM cannot be disabled with arbitrary R/W directly
- Limits gadgets

- Hypervisor is a blackbox
- Proprietary
- Unreadable with kernel R/W

- Thanks to @flat_z I was able to get hypervisor code to study

https://twitter.com/flat_z

Hypervisor RE
Reverse Engineering ring-1

Hypervisor

- x86 FreeBSD kernel runs as guest
- Embedded as part of the kernel on lower firmwares

- On higher firmwares it’s loaded separately but is still similar in function
- not bhyve-based, completely custom
- Very small

- 14 hypercalls < 3.xx FW

Hypervisor

- 4KB pages
- 4107 pages allocatable
- ~16.4MB total HV data pages

Hypervisor
- Can’t boot w/o SVM
- Uses ‘NDA’ feature

(likely “xotext”)
- Two page tables

- HV pages
- Nested Page Tables

(NPT)

Hypervisor
- Can’t boot w/o SVM
- Uses ‘NDA’ feature

(likely “xotext”)
- Two page tables

- HV pages
- Nested Page Tables

(NPT)

Hypervisor
- Can’t boot w/o SVM
- Uses ‘NDA’ feature

(likely “xotext”)
- Two page tables

- HV pages
- Nested Page Tables

(NPT)

Hypervisor
- Can’t boot w/o SVM
- Uses ‘NDA’ feature

(likely “xotext”)
- Two page tables

- HV pages
- Nested Page Tables

(NPT)

Hypervisor - Paging
- Copies FreeBSD page

tables
- Everything is mapped

as R/W
- Kernel mapping’s xotext

bit not set

Hypervisor - Paging
- Copies FreeBSD page

tables
- Everything is mapped

as R/W
- Kernel mapping’s xotext

bit not set

Hypervisor - Paging
- Copies FreeBSD page

tables
- Everything is mapped

as R/W
- Kernel mapping’s

xotext bit not set

Hypervisor - Nested Paging
- Page tables stored in

HV-only data
- Kernel text should have

XOM bit set

Hypervisor - Nested Paging
- Page tables stored in

HV-only data
- Kernel text should have

XOM bit set

Hypervisor - Nested Paging
- Page tables stored in

HV-only data
- Kernel text should

have XOM bit set

Bit 58 (reserved on regular PCs)

Hypervisor - Nested Paging
- HV pages not mapped
- Kernel text is nested
- Enforces XOM on guest

kernel

Hypervisor - Nested Paging
- HV pages not mapped
- Kernel text is nested
- Enforces XOM on guest

kernel

Hypervisor - Nested Paging
- HV pages not mapped
- Kernel text is nested
- Enforces XOM on

guest kernel

Hypervisor - Guest Kernel Reads

Kernel Text

HV Data (unmapped)

Kernel Data

Userland

CPU

Read Read

Hypervisor - Guest Kernel Reads

Kernel Text

HV Data (unmapped)

Kernel Data

Userland
#PF

Read Read

Hypervisor - Guest Kernel Reads

Kernel Text

HV Data (unmapped)

Kernel Data

Userland
#NPF

PTExo

Nested Page
Table

R
ea

d

2n
d

Le
ve

l A
dd

re
ss

 T
ra

ns
la

tio
n

Read

Hypervisor - VM Setup
- Initializes Machine State

Registers (MSRs)
- Virtual Machine Control

Block (VMCB) Setup
- IOMMU Init

- Skip this for today
- Mostly for M.2 SSD

- HV main loop (intercepts)

Hypervisor - VM Setup
- Initializes Machine State

Registers (MSRs)
- Virtual Machine Control

Block (VMCB) Setup
- IOMMU Init

- Skip this for today
- Mostly for M.2 SSD

- HV main loop (intercepts)

Hypervisor - VM Setup
- Initializes Machine State

Registers (MSRs)
- Virtual Machine Control

Block (VMCB) Setup
- IOMMU Init

- Skip this for today
- Mostly for M.2 SSD

- HV main loop (intercepts)

Hypervisor - VM Setup
- Initializes Machine State

Registers (MSRs)
- Virtual Machine Control

Block (VMCB) Setup
- IOMMU Init

- Skip this for today
- Mostly for M.2 SSD

- HV main loop (intercepts)

Hypervisor - VM Setup
- Enables SVM and XOM
- Sets up host save state

area

Hypervisor - VM Setup
- Enables SVM and XOM
- Sets up host save state

area

Hypervisor - VM Setup
- Enables SVM and XOM
- Sets up host save state

area

Hypervisor - VM Setup
- Intercepts Control Register

+ MSR Writes
- CR0, CR4

- Supports Hypercalls
- Enables Nested Paging /

SLAT
- Enables Guest Mode

Execute Trap (GMET)

Hypervisor - VM Setup
- Intercepts Control

Register + MSR Writes
- CR0, CR4

- Supports Hypercalls
- Enables Nested Paging /

SLAT
- Enables Guest Mode

Execute Trap (GMET)

Hypervisor - VM Setup
- Intercepts Control Register

+ MSR Writes
- CR0, CR4

- Supports Hypercalls
- Enables Nested Paging /

SLAT
- Enables Guest Mode

Execute Trap (GMET)

Hypervisor - Guest Mode Execute Trap

…

https://www.amd.com/system/files/TechDocs/24593.pdf

Hypervisor - Guest Mode Execute Trap

…

https://www.amd.com/system/files/TechDocs/24593.pdf

Hypervisor - Guest Mode Execute Trap

…- We can’t execute user pages in kernel context
- Even if SMEP is disabled/bypassed

- Makes it harder to subvert kernel control flow

Hypervisor - Intercepts

- Intercepts obvious attack

Hypervisor - Intercepts

- Intercepts obvious attack
- Protected MSRs

Hypervisor - Intercepts

- Intercepts obvious attack
- Protected MSRs

- Extended Features
(EFER) is
masked

NDA xotext

Hypervisor - Intercepts

- Intercepts obvious attack
- Protected MSRs

- Other protected regs
are forbidden

#GP Exception

Hypervisor - Intercepts

- Intercepts obvious attack
- Protected MSRs

- Other protected regs
are forbidden

- Most MSRs are
protected

Hypervisor - Intercepts

- Intercepts obvious attack
- Protected MSRs
- CR0 Write is filtered

Hypervisor - Intercepts

- Intercepts obvious attack
- Protected MSRs
- CR0 Write is filtered

Hypervisor - Intercepts

- Intercepts obvious attack
- Protected MSRs
- CR0 Write is filtered
- CR4 Write is also

filtered

Hypervisor - Intercepts

- Intercepts obvious attack
- Protected MSRs
- CR0 Write is filtered
- CR4 Write is also

filtered

Hypervisor (Security)

- Intercepts various other hypercalls
- Most are IOMMU related

- SET_GUEST_BUFFERS
- ENABLE_DEVICE
- (UN)BIND_PASID
- Etc.

- Other misc. hypercalls
- TMR_VIOLATION_ERROR for Trusted Memory Region
- SET_CPUID_(PS4/PPR) for PS4 game emulation

Encryption &
Signing
Brief Overview

Encryption & Signing

- PS5 has code signing
- Applications & libraries are encrypted on disk
- Most of these files are known as “Signed ELFs” (SELFs)

- Only the security co-processor has keys
- Decrypted & Verified via kernel API

- Much more relevant to the PS5 security model than PS4
- Used to be handled by SAMU
- Superseded by AMD Platform Security Processor (PSP/AMD-SP)

Encryption & Signing - PSP + DRM

- PS5 runs two secure kernels

Encryption & Signing - PSP + DRM

- PS5 runs two secure kernels
- Sony Secure OS (MP0)

- Secure modules, SAMU port

Encryption & Signing - PSP + DRM

- PS5 runs two secure kernels
- Sony Secure OS (MP0)

- Secure modules, SAMU port
- AMD Secure OS (MP3)

- PlayReady 3000 DRM
- Trusted Execution Environment
- Supports hotloading of Trusted

Applets (TAs)

Encryption & Signing - “A53”

- Additional security co-processor
built into the PS5 SoC

- Dual core AARCH64
co-processor

- Kernel refers to it as “A53”
and/or “mp4”

- Likely a Cortex-A53
- Don’t know much about it yet
- Seems unique to PS5/Xbox SX
- Moves secure stuff from x86

Future Research
& Ideas

Recap and where to go from
here

Future Research & Ideas - Data-Only Attacks

- Hypervisor essentially limits us to data-only attacks
- But control of data is still powerful

- We can’t patch/hook code
- … but we can hook data

- Instead of patching PSP kernel API, we can try hijacking the mailbox
- Spoof responses to load our own code
- Haven’t had time to try this yet, but in theory should work

- Might not be path of least resistance…

Future Research & Ideas - Hypervisor

- Guest has a lot of potential vectors for VM escape
- Obvious and easy ones are out

- Control regs, EFER, page tables
- But less obvious vectors can be explored

- MSRs
- IOMMU / HW attack + IOMMU hypercalls
- Features / extended instructions HV doesn’t consider
- Memory Mapped I/O (MMIO)

- These kinds of bugs definitely exist :)

Future Research & Ideas - Hypervisor

- The hypervisor can’t protect everything
- Trade-offs

- Move more to HV = more attack surface
- Also high performance penalty

- HV is completely in-house
- Less audited
- Less mature

- But a unique albeit formidable challenge is XOM

Conclusions

Conclusions

- Sony has stepped up
- Attack surface reductions
- Exploit mitigations
- Hypervisor-backed security model

- System mods no longer as easy as Userland + Kernel chain
- Secure element and hardware security actually matters now
- Most of this security is banked on the hypervisor

Conclusions

- While the hypervisor is small, securing it is still hard
- Complex implementations force an ever-expanding scope
- Console exploitation isn’t dead, just more interesting
- But it’s more costly in terms of time
- More steps are needed

- More burn potential

Conclusions

- If this all sounds interesting to you, I run a discord server for PS5
research

- Still lots to do!
- Feel free to hit me up on discord or twitter with thoughts or questions
- PS5 R&D discord: discord.gg/kbrzGuH3F6
- My handles:

- Discord: specter#0666
- Twitter: @SpecterDev

- If you do work on stuff, document on psdevwiki.com
- Hopefully some cool stuff goes public soon

https://discord.com/invite/kbrzGuH3F6
https://twitter.com/specterdev

Thanks

- Flatz: providing a kernel dump to reverse + other knowledge
- Daax: answering all my annoying HV questions
- Misc. others from Reverse Engineering discord

- discord.gg/rtfm
- zi: nitpicking slides
- Hardwear.io for giving me the opportunity to speak
- All of you for listening

http://discord.gg/rtfm

Fin

