galois

Nationally Critical Infrastructure needs Secure Hardware

aka Democracy is a Critical System

Joe Kiniry
Galois and Free & Fair

Cybersecurity of Nationally Critical Infrastructure: Assurance Cases Built on Sand

Cybersecurity of Nationally Critical Infrastructure: Assurance Castles Built on Sand

Where is the Security?

Market Opportunity: Bad Reference Monitors

Galois' Trusted Services Engine

Block Access Controller Assurance Architecture

- testing is weak
 evidence about the
 actual system
 - residual worry: have I tested enough?
- proofs are strong evidence about a model of the system
 - residual worry: is my model accurate?

Where is the Security?

Application Operating System System on a Chip (SoC) Silicon

MILS: High-assurance Policy Enforcement

Monolithic OS approach

MILS approach

Operating System Options

Where is the Security?

we trust?

System Assurance

system assurance is about the assurance of your hardware & firmware & software

System Assurance

- system assurance is about the assurance of your hardware & software
 - today we have faith-based assurance cases

Assurance Cases Built on Sand

- assurance cases depend upon evidence
- hardware assurance means: tested, simulated, some formal verification of equivalence, fabbed it somewhere I cannot trust, and it looks like it works
- software formal verification means formal proof that an implementation does exactly as specified no more, no less (plus testing, simulation, etc.)
- software assurance rely upon firmware and hardware's guarantees
- firmware is opaque and has no guarantees, and hardware does not come with a reliable specification
- vendors rarely wish to share specifications
- consequently...
 our assurance cases are build on sand

The Bridge Between Our Worlds is Broken

A Solution Proposed This Decade

- provide the high level formal models from your verification process
- refine EDA tools to produce evidence

A Solution Proposed This Decade

- provide the high level formal models from your verification process
- refine EDA tools to produce evidence

IA-32 Formal Model Ia-32.hol Ia-32.sv Ia-32.hs

 evidence that checked properties are valid

Implications on Assurance and Capabilities

- decrease resource waste due to duplication of enormous effort and increase quality
- more intelligent and cost-effective co-design process, methods, and tools
- end-to-end assurance cases open up new markets and products, both government and consumer

New Versions! With Proofs! We Guarantee It!

A 2014 Call to Action

- let's build assurance cases on a firm foundation
- improve communication between assurance and software formal verification experts and hardware designers and verification engineers
- integrate formal verification tools and techniques into hardware verification
- demonstrate exemplar formal assurance cases for non-trivial systems

DARPA SSITH: System Security Integrated Through Hardware

20

SSITH in a Nutshell

21

- secure hardware FTW!
- goal is to eliminate most classes of software vulnerabilities
- open source, soft-core RISC-V on FPGAs as the demo platform
- six teams developing 18 SoCs
- each team augments three baseline RISC-V SoCs to make them secure
- a 32 bit microcontroller and two 64 bit CPUs (one OOO)
- security approaches are all over the map, including tagging, enclaves, novel crypto, and Al

Mitigating Software Vulnerabilities with Hardware

- SSITH CPUs must be backwards compatible & run existing binaries
- these binaries have vast numbers of exploitable vulnerabilities
- software vulnerabilities are classified using NIST CWE classes via NIST, which form a subtyping tree depicted at right

Mitigating Software Vulnerabilities with Hardware

- SSITH CPUs must be backwards compatible & run existing binaries
- these binaries have vast numbers of exploitable vulnerabilities
- software vulnerabilities are classified using NIST CWE classes via NIST, which form a subtyping tree depicted at right
- SSITH CPUs mitigate specific CWE types, thus pruning subtrees of software vulnerabilities away

Security-Related R&D

- several mechanized formal specifications of the ISA and (possibly secure) cores
 - MIT, SRI, Cambridge, Galois, Symbiotic EDA
- several cryptographic extension implementations
 - from ad hoc to formally synthesized, from not tested at all to formally verified, from leaky to side channel-free
- secure boot implementations and enclaves
 - from ports of large historic nightmares to formally verified implementations
- SSITH teams are creating dozens of different secure SoCs that include dozens of security features
- other programs are working on circuit obfuscation, tamper detection, and mitigation of supply channel attacks

DARPA SHIELD

RISC-V: An Open Platform for Security R&D

What is RISC-V?

- RISC-V (pronounced risk-five) is the fifth major RISC design effort at UC Berkeley
- high-quality, license-free, royalty-free RISC ISA
- used to design everything from tiny microcontrollers to multicore servers with domain specific accelerators
- development started in Summer 2010
- early workshops were a couple of handfuls of graduate students and faculty from Berkeley & MIT
- the latest RISC-V Summit had >1,000 attendees and hundreds of companies were represented
- a platform for doing open secure hardware R&D and product development for very low cost

Why is RISC-V Interesting?

simple

far smaller than other commercial ISAs

clean-slate design

- clear separation between user and privileged ISA
- avoids µarchitecture or technology-dependent features

modular

- small standard base ISA
- multiple standard extensions

designed for extensibility/specialization

- variable-length instruction encoding
- vast opcode space available for instruction-set extensions

stable

- base and standard extensions are frozen
- additions via optional extensions, not new versions

RISC-V + Security

- top-level Security Standing Committee to provide leadership, guidance, and strategy
 - Chair: Helena Handschuh (Rambus)
 Vice Chair: Joe Kiniry (Galois)
- two active Task Groups
 - cryptographic extensions
 - Chair: Richard Newell (Microchip/Microsemi)
 Vice Chair: Dan Zimmerman (Galois)
 - broad set of crypto algorithms via instructions
 - leverages work from vector extension
 - trusted execution environment
 - Chair: Joe Xie (NVIDIA)
 - different shaped enclaves for different kinds of SoCs (microcontroller — server-class CPUs)

Democracy is a Critical System

The State of Voting System Security

USA

- handful of vendors: ES&S, Hart-Intercivic,
 Dominion Voting, Unisyn, Clear Ballot Group
- International
 - two main vendors: Scytl and Smartmatic
- the average voting system is either...
 - COTS running on unpatched Windows or Linux
 - custom hardware designed and manufactured in 1990s using microcontrollers & unpatched RTOS

Evoting System Flavors

- bespoke low-tech voting systems
 - NL's Nedap, India's EVM
- optical mark-sense voting systems
 - electronic ballot markers & digital pens
- DRM (with or without paper audit trails)
- remote/internet voting systems
- end-to-end, voter-verifiable systems
 - Punchscan, Scantegrity, Prêt à Voter, ElectionGuard

32

Bespoke Systems

- computers used in elections since the mid-1980s
- voting machines are simple computers
- Note: 1. Note: 1.

Lever Machines

Optical Scanners

State of Connecticut Official Ballot Fairfield, Connecticut Municipal Election November

November 8, 2011

Voting District 1

Be sure to complete your vote on the reverse side of this ballot.

DREs and VVPAT

Typical DRM Machine

- terribly built
- runs Windows
- uses commodity hardware
- no paper vailots
- works correctly

State-of-the-Art Assessment

- personally assessed many evoting software systems (commercial and research) and read reports on hardware systems
- these systems, in the general, have
- poor software engineering practices
- no rigorous validation and verification
- little traceability to requirements
- questionable certification
- poor quality and security

38

But Wait!

- Internet Voting!
 - Estonia
 - Australia
 - Switzerland
- Blockchain!
 - Smartmatic
 - Voatz
 - Votem
 - FollowMyVote
 - …and other tripe…

Estonia Sample Code

def analyze(ik, vote, votebox):

- # TODO: implement security checks
- # such as verifying the correct size
- # of the encrypted vote

return []

DEF CON Voting Village

DEF CON Voting Village

42

DEF CON Voting Village

THE WALL STREET JOURNAL.

U.S. Edition ▼ June 13. 2019 | Print Edition | Video

.....

ome World U.S. Politics Economy Business Tech Markets Opinion Life & Arts Real Estate WSJ. Magazine

Search Q

Subscribe | Sign In

U.S.

Voting Machine Used in Half of U.S. Is Vulnerable to Attack, Report Finds

The flaw in Election Systems & Software's Model 650 high-speed ballot-counting machine was detailed in 2007

The Election Systems & Software Model 650 Central Scanner & Tabulator has a flaw that could make it vulnerable to a cyberattack, according to a new report. PHOTO: ROBERT MCMILLAN/THE WALL STREET JOURNAL

By Robert McMillan and Dustin Volz

Updated Sept. 27, 2018 8:40 a.m. ET

Most Popular Videos

Oil Tankers Attacked in Gulf of Oman

Huawei's Chinese
Phones Are Also
American

Here's Where Some Lawmakers Hope to Reduce Trump's Power

Hong Kong Police Fire Tear Gas at Protesters

5 Why the CIA
Cultivated Kim Jong
Un's Half Brother as a
Source

Most Popular Articles

Opinion: Netflix's False Story of the Central Park Five

Tankers Off Iran Hit by Suspected Torpedoes

Facebook Emails
Suggest Zuckerberg
Knew of Problematic
Privacy Practices

DARPA Secure Hardware meets Democracy

- election technology...
- is on everyone's minds
- is nationally critical infrastructure
- is notorious for security flaws
- a modern voting system...
- needs a microcontroller (in the ballot box that accepts paper ballots),
- a desktop CPU (for pollbooks, ballot marking devices, and hand-marked paper ballot scanning), and
- a superscalar CPU (for tabulation and reporting evidence to the public)
- must be open hardware and software

DEF CON 2019 Smart Ballot Box

Smart Ballot Box (Reverse)

Smart Ballot Box Prototype

CAD SBB Mechanical Design

Physical Prototypes

49

DEF CON DARPA Public Demonstration of Secure Hardware

- publish all source code, all firmware, and all hardware designs down to the RTL
- publish all hardware designs (CAD, PCBs, etc.)
- publish all documents describing the system: peerreviewed papers, technical reports, threat models, assumptions and assurance case, etc.
- 2019: permit red team members to digitally attack external interfaces (serial and Ethernet) and load arbitrary malware into FreeRTOS on microcontroller
- 2020: same adversarial capability but targeting Linux and FreeBSD on two 64 bit SoCs

For More Information

- Galois https://galois.com/
- Free & Fair https://freeandfair.us/
- RISC-V https://riscv.org/
- https://twitter.com/galois @galois
- https://twitter.com/free_and_fair @free_and_fair
- https://twitter.com/votingvillagedc
 @votingvillagedc

