riscurc

Top 10
Secure Boot mistakes

Jasper van Woudenberg
(Job de Haas)

jasperariscure.com

Djzvw

mailto:jasper@riscure.com

Secure Boot Theory

riscurc

Internal

boot ROM

Verify signature

1%t stage

boot
loader

Optional decrypt

Nt stage
boot
loader

oS/
Application

Secure Boot practice

Besides chain of trust...

* Memory / peripheral lockdown

* Configuration reading / parsing

* Manufacturing modes

* Debug and in-field servicing

* Power modes (resume from s3 vs cold boot)
* Firmware upgrades

* Constraints: many use cases, bootup time

riscurc

riscure https://alephsecurity.com/vulns/aleph-2017026

10. Verification mistakes

* IFanything is left unsigned, what can it be used for?
* Problems start when length, loading address etc. become flexible
* Failure: Start interpreting before verification

Examples:

iPhone 3GS, Samsung Galaxy S4, OnePlus 2
http://theiphonewiki.com/wiki/0x24000_Segment_Overflow
http://blog.azimuthsecurity.com/2013/05/exploiting-samsung-galaxy-s4-secure-boot.html
https://alephsecurity.com/vulns/aleph-2017026

Mitigation:

* Sign EVERYTHING

* Do not use any data without/before checking authenticity (eg. headers, pointers, addresses)
* *IFyou really can’t sign it, check very thoroughly

riscurc

http://theiphonewiki.com/wiki/0x24000_Segment_Overflow
http://blog.azimuthsecurity.com/2013/05/exploiting-samsung-galaxy-s4-secure-boot.html
https://alephsecurity.com/vulns/aleph-2017026

Low DMA | High DMA Application Stack Attacker-Controlled

Buffer Buffer PP RCM Payload Target
ﬁT_STATUS vulnerability memcpy

Low DMA | High DMA Application Stack Attacker-Controlled

Buffer Buffer PP RCM Payload Target

\

riscurc

https://github.com/Qyriad/fusee-

launcher/blob/master/report/fusee _gelee.md

\

9. Firmware Upgrade / Recovery flaws

* Important feature to mitigate flaws in the field
* The mechanism itself must be hardened! Chunking difficult
* Updated firmware should follow same rules as installed firmware

Examples:

* Switch hack https://github.com/Qyriad/fusee-
launcher/blob/master/report/fusee_gelee.md

* Samsung / Qualcomm ODIN overflows
https://fredericb.info/2017/07/sve-2016-7930-multiple-buffer-overflows-in-samsung-galaxy-bootloader.html

!) CAN BE

UPGRADED,
|| can you?

Mitigation:
* Limit the functionality! Avoid partial updates, signing individual blocks
* Implement anti-rollback: can negate fixes

riscurc

https://github.com/Qyriad/fusee-launcher/blob/master/report/fusee_gelee.md
https://fredericb.info/2017/07/sve-2016-7930-multiple-buffer-overflows-in-samsung-galaxy-bootloader.html

NRF24L01 modeule

wireless socket

8. Logical bugs / Driver weaknesses I

1/0 interface.

Clock backup

* Boot code has several functions: b e

* Boot from different media including file system ;
(USB, SD, MMC, UART, NOR, NAND, SPI) e

* Ensure fall back and restore mechanisms I:I;E‘:JZT"‘“\ @ M & 32.768k
* Perform parsing of firmware image formats, certificates i . it

* Input parsing problems can lead to overflows, integer sign problems, etc.

Examples:

* iPhone exploits http://theiphonewiki.com/wiki/Usb_control_msg(OxA1, 1) Exploit,

Limera1n_Exploit, SHA-1_Image_Segment_Overflow
* Nintendo 3DS: https://lab.dsst.io/slides/33c3/slides/8344.pdf

* Nintendo Switch: https://failOverflow.com/blog/2018/shofel2/

STM32F407ZET6

Mitigation:

* Code review, fuzzing, etc

¢ Limiting Functionality to bare minimum, reuse well-tested code

riscurc 8

http://theiphonewiki.com/wiki/Usb_control_msg(0xA1,_1)_Exploit
https://lab.dsst.io/slides/33c3/slides/8344.pdf
https://fail0verflow.com/blog/2018/shofel2/

At the push-glitch of a button

Proper boot
code

Attacker
controlled

riscurc

7. TOCTOU race conditions

* Between verification and use, data can be modified
* An attacker can access data externally or multiple components have access

Examples:

* Typical case: boot from external NOR flash
* Integrity check is performed on content in external storage
* Code is changed and only then read or directly executed from the external storage

* Nokia BB5 unlock by Dejan Kaljevic (2007)
http://forum.gsmhosting.com/vbb/f299/bb5-sp-unlocking-theory-443418/

* BIOS examples with SMM
http://www.c7zero.info/stuff/AttackingAndDefendingBIOS-RECon2015.pdf

Mitigation:
* Prevent any access between check and use
* Move to internal memory, stop/block other engines

riscurc

10

http://forum.gsmhosting.com/vbb/f299/bb5-sp-unlocking-theory-443418/
http://www.c7zero.info/stuff/AttackingAndDefendingBIOS-RECon2015.pdf

Brute forcing 16*128 =
2048 values takes
about 2 hrs

riscurc

- PN XB00351-002
05472 CHINA

11

6. Timing attacks

¢ Allow guessing much faster than brute-force
 Typical on compare function (HMAC, service password)

Examples:

* Hash calculated with symmetric key is stored with firmware. Boot calculates
same and compares (20 bytes)

* memcmp() has different timing if byte is correct or wrong

* Xbox 360: http://beta.ivc.no/wiki/index.php/Xbox_360_Timing_Attack

* Cristofaro’s talk from yesterday

Mitigation:
e Time-constant comparisons

* Side channel leakage review
https://www.riscure.com/publication/secure-application-programming-presence-side-channel-attacks/

riscurc

12

http://beta.ivc.no/wiki/index.php/Xbox_360_Timing_Attack
https://www.riscure.com/publication/secure-application-programming-presence-side-channel-attacks/

Slot machine EMP jamming

riscurc 13

5. Fault injection

* Flis an effective way to subvert execution flow (even with perfect logical code!)

* Examples of faulting sensitive coding:
* using infinite loops
* single comparisons (signature verification)

* Seldom a persistent attack; effective as stepping stone

Examples:

* XBOX 360: reset glitch attack: http://www.free60.org/Reset_Glitch_Hack

PS4: https://failOverflow.com/blog/2018/ps4-syscon/

* Nintendo Switch: https://media.ccc.de/v/34c3-8941-console_security_-_switch

https://www.blackhat.com/docs/eu-16/materials/eu-16-Timmers-Bypassing-Secure-Boot-Using-Fault-Injection.pdf
PS Vita; https://yifan.lu/2019/02/22/attacking-hardware-aes-with-dfa/

Mitigation:
* Side channel leakage review / defensive coding

riscurc 14

http://www.free60.org/Reset_Glitch_Hack
https://fail0verflow.com/blog/2018/ps4-syscon/
https://media.ccc.de/v/34c3-8941-console_security_-_switch
https://www.blackhat.com/docs/eu-16/materials/eu-16-Timmers-Bypassing-Secure-Boot-Using-Fault-Injection.pdf
https://yifan.lu/2019/02/22/attacking-hardware-aes-with-dfa/

4. State errors

* Where is state stored? How can a state sequence be influenced?

* Suspend/resume example:
State is stored insecurely, which allows a local exploit to subvert the boot process on
resume
— maximum privilege escalation

* Lifecycle state!

* http://i.blackhat.com/asia-19/Thu-March-28/bh-asia-Seunghun-Finally-I-Can-Sleep-
Tonight-Catching-Sleep-Mode-Vulnerabilities-of-the-TPM-with-the-Napper.pdf

Mitigation:
* Cryptographically sign & verify
* Analyze all state variables in the boot sequence
(exception handling, suspend/resume, storage, integrity)
* Consider both logical and fault injection threats
riscurc 15

http://i.blackhat.com/asia-19/Thu-March-28/bh-asia-Seunghun-Finally-I-Can-Sleep-Tonight-Catching-Sleep-Mode-Vulnerabilities-of-the-TPM-with-the-Napper.pdf

BADFET

SBO

SB 10

/

TrustZone TEE

Uboot

/

- = =~==>» Uboot Debug Console

Linux Kernel

riscurc

7

Processor @ Memory

5 Corrupted —> ACA

ata

Cache @ Code
Instruction Uncorrupted

Cache |«] Data

—

= helpmw
mw - memory write (fill)
Usage: mw [.b, .w, .I] address value [count]

https://www.usenix.org/system/files/conference/

wootl17/wootl7-paper-cui.pdf

16

3. Debug JTAG/service functionality

* Large topic!
* Interfaces: JTAG, UART, Proprietary, ...
* Force debug boot mode
* Service backdoor / passwords

* UART is almost as pervasive as JTAG
* Many devices leave some form of access for debug/service purposes

riscurc 17

3. Debug JTAG/service functionality

* Everyone understands that backdoors can be bad
* More often: “It is bad, but not for my application”, then later the requirements change
* Checking a HW fuse # properly hardware protected

Examples:
* Nook boot lock exploit (2012)

http://www.xda-developers.com/android/patch-this-barnes-and-noble-nook-tablet-hardware-protection-compromised/
* Many car tuning ECU cables/software, ‘Magic’ authentication allows firmware mods,

changing car keys, mileage

Mitigation:

* Secure chips can disable or lock JTAG

* At least use some device unique authentication

* Better to have ‘debug upgrade’ than debug built-in

riscurc 18

http://www.xda-developers.com/android/patch-this-barnes-and-noble-nook-tablet-hardware-protection-compromised/

3DS

separately. This means that each key in the keysector aligns
with a block that is encrypted completely separately from all
of the other aligned keys, allowing us to move the keys into
any position we want while still decrypting properly.

riscurc

If we try enough keys and ARMOY firmware binary versions,
there 1s a high probability that we will eventually find one
that decrypts the ARM9Y9 firmware binary deterministically
such that the entrypoint is a branch instruction to another
memory address where a payload can be placed. We found, by

https://arxiv.org/pdf/1802.00092.pdf

19

2. Key management

* Checking key usage
* Signing development boot loaders with production keys

* Crypto sanitization :
* After the boot code uses cryptographic engines they may become available for generic code
* State can be reused, registers may be read
* Attack: create more signatures, decrypt/encrypt more code

Examples
Samsung Galaxy S3 versus Exynos dev board boot loader
3DS clearing issue in FW 8.1.0: https://arxiv.org/pdf/1802.00092.pdF

Mitigation:

* Understand the value of all key material and signatures. Act accordingly.

* Clear registers of crypto engines and any other memory used for storing sensitive data
* https://nvipubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf

riscurc 20

https://arxiv.org/pdf/1802.00092.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf

1. Wrong use of crypto

* Know and understand the weaknesses of the algorithms and protocols used
 Decryption # Authentication

Examples

* Nokia DCT4 2" stage loader u_2nd.fia could be patched to load unencrypted 3™ stage
http://www.dejankaljevic.org/download/dct4_rd.zip 2002/2005

* RSA small exponent signature verification

* Amlogic forgot HMAC: https://fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html

+ 3DS Key shuffling attack

Mitigation:
* Cryptographic review

riscurc

21

http://www.dejankaljevic.org/download/dct4_rd.zip%202002/2005
https://fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html

1. Wrong use of crypto

« ECDSA is a signature scheme
* Input: curve parameters, private key (dA), message (m), nonce (k)
* Output: signaturer,s

5. Calculate r = ;1 mod n. If r = 0, go back to step 3.
6. Calculate s = k' (2 + rd4) mod n.If s = 0, go back to step 3.

* Nonce reuse: dA =(m1*s2 - m2%*s1)/ (r*(s1 -s2)) modn

riscurc

22

1. Wrong use of crypto
PS3 Epic Fall

Sony’s ECDSA code

riscurc

int getRondomNWber()
return Y. // chosen by fair dice roll.

/| quaranteed to be random.

Source: http://events.ccc.de/congress/2010
Console Hacking 2010

23

Now what?

* (Securely) booting a system is a complex operation
* In the field patching of boot components is practically very hard -
impossible

* Security researchers: learn hw attacks, explore attack surface
* Developers: secure dev practices, limit attack surface, test!
* Integrators: ask developers/third party to provide assurance on security

riscurc

24

Riscure B.V.

Frontier Building, Delftechpark 49
2628 X) Delft

The Netherlands

Phone: +31 15251 40 90

WWW.riscure.com

Riscure North America

550 Kearny St., Suite 330

San Francisco, CA 94108 USA
Phone: +1 650 646 99 79

mForequest@riscure.com

Riscure China

Room 2030-31, No. 989, Changle Road, Shanghai 200031
China

Phone: +86 215117 5435

inforcn@riscure.com

riscurc

Challenge your security

http://www.riscure.com/
mailto:inforequest@riscure.com
mailto:inforcn@riscure.com

