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Secure Boot practice

Besides chain of trust...

* Memory / peripheral lockdown

* Configuration reading / parsing

* Manufacturing modes

* Debug and in-field servicing

* Power modes (resume from s3 vs cold boot)
* Firmware upgrades

* Constraints: many use cases, bootup time
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10. Verification mistakes

* IFanything is left unsigned, what can it be used for?
* Problems start when length, loading address etc. become flexible
* Failure: Start interpreting before verification

Examples:

iPhone 3GS, Samsung Galaxy S4, OnePlus 2
http://theiphonewiki.com/wiki/0x24000_Segment_Overflow
http://blog.azimuthsecurity.com/2013/05/exploiting-samsung-galaxy-s4-secure-boot.html
https://alephsecurity.com/vulns/aleph-2017026

Mitigation:

* Sign EVERYTHING

* Do not use any data without/before checking authenticity (eg. headers, pointers, addresses )
* *IFyou really can’t sign it, check very thoroughly
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Low DMA | High DMA Application Stack Attacker-Controlled

Buffer Buffer PP RCM Payload Target
ﬁT_STATUS vulnerability memcpy

Low DMA | High DMA Application Stack Attacker-Controlled

Buffer Buffer PP RCM Payload Target
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9. Firmware Upgrade / Recovery flaws

* Important feature to mitigate flaws in the field
* The mechanism itself must be hardened! Chunking difficult
* Updated firmware should follow same rules as installed firmware

Examples:

* Switch hack https://github.com/Qyriad/fusee-
launcher/blob/master/report/fusee_gelee.md

* Samsung / Qualcomm ODIN overflows
https://fredericb.info/2017/07/sve-2016-7930-multiple-buffer-overflows-in-samsung-galaxy-bootloader.html

! ) CAN BE

UPGRADED,
|| can you?

Mitigation:
* Limit the functionality! Avoid partial updates, signing individual blocks
* Implement anti-rollback: can negate fixes
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8. Logical bugs / Driver weaknesses I

1/0 interface.

Clock backup

* Boot code has several functions: b e

* Boot from different media including file system ;
(USB, SD, MMC, UART, NOR, NAND, SPI) e

* Ensure fall back and restore mechanisms I:I;E‘:JZT"‘“\ @ M & 32.768k
* Perform parsing of firmware image formats, certificates i . it

* Input parsing problems can lead to overflows, integer sign problems, etc.

Examples:

* iPhone exploits http://theiphonewiki.com/wiki/Usb_control_msg(OxA1, 1) Exploit,

Limera1n_Exploit, SHA-1_Image_Segment_Overflow
* Nintendo 3DS: https://lab.dsst.io/slides/33c3/slides/8344.pdf

* Nintendo Switch: https://failOverflow.com/blog/2018/shofel2/

STM32F407ZET6

Mitigation:

* Code review, fuzzing, etc

¢ Limiting Functionality to bare minimum, reuse well-tested code
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7. TOCTOU race conditions

* Between verification and use, data can be modified
* An attacker can access data externally or multiple components have access

Examples:

* Typical case: boot from external NOR flash
* Integrity check is performed on content in external storage
* Code is changed and only then read or directly executed from the external storage

* Nokia BB5 unlock by Dejan Kaljevic (2007)
http://forum.gsmhosting.com/vbb/f299/bb5-sp-unlocking-theory-443418/

* BIOS examples with SMM
http://www.c7zero.info/stuff/AttackingAndDefendingBIOS-RECon2015.pdf

Mitigation:
* Prevent any access between check and use
* Move to internal memory, stop/block other engines

riscurc

10


http://forum.gsmhosting.com/vbb/f299/bb5-sp-unlocking-theory-443418/
http://www.c7zero.info/stuff/AttackingAndDefendingBIOS-RECon2015.pdf

Brute forcing 16*128 =
2048 values takes
about 2 hrs
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6. Timing attacks

¢ Allow guessing much faster than brute-force
 Typical on compare function (HMAC, service password)

Examples:

* Hash calculated with symmetric key is stored with firmware. Boot calculates
same and compares (20 bytes)

* memcmp() has different timing if byte is correct or wrong

* Xbox 360: http://beta.ivc.no/wiki/index.php/Xbox_360_Timing_Attack

* Cristofaro’s talk from yesterday

Mitigation:
e Time-constant comparisons

* Side channel leakage review
https://www.riscure.com/publication/secure-application-programming-presence-side-channel-attacks/

riscurc
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Slot machine EMP jamming
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5. Fault injection

* Flis an effective way to subvert execution flow (even with perfect logical code!)

* Examples of faulting sensitive coding:
* using infinite loops
* single comparisons (signature verification)

* Seldom a persistent attack; effective as stepping stone

Examples:

* XBOX 360: reset glitch attack: http://www.free60.org/Reset_Glitch_Hack

PS4: https://failOverflow.com/blog/2018/ps4-syscon/

* Nintendo Switch: https://media.ccc.de/v/34c3-8941-console_security_-_switch

https://www.blackhat.com/docs/eu-16/materials/eu-16-Timmers-Bypassing-Secure-Boot-Using-Fault-Injection.pdf
PS Vita; https://yifan.lu/2019/02/22/attacking-hardware-aes-with-dfa/

Mitigation:
* Side channel leakage review / defensive coding
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4. State errors

* Where is state stored? How can a state sequence be influenced?

* Suspend/resume example:
State is stored insecurely, which allows a local exploit to subvert the boot process on
resume
— maximum privilege escalation

* Lifecycle state!

* http://i.blackhat.com/asia-19/Thu-March-28/bh-asia-Seunghun-Finally-I-Can-Sleep-
Tonight-Catching-Sleep-Mode-Vulnerabilities-of-the-TPM-with-the-Napper.pdf

Mitigation:
* Cryptographically sign & verify
* Analyze all state variables in the boot sequence
(exception handling, suspend/resume, storage, integrity)
* Consider both logical and fault injection threats
riscurc 15
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https://www.usenix.org/system/files/conference/

wootl17/wootl7-paper-cui.pdf
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3. Debug JTAG/service functionality

* Large topic!
* Interfaces: JTAG, UART, Proprietary, ...
* Force debug boot mode
* Service backdoor / passwords

* UART is almost as pervasive as JTAG
* Many devices leave some form of access for debug/service purposes
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3. Debug JTAG/service functionality

* Everyone understands that backdoors can be bad
* More often: “It is bad, but not for my application”, then later the requirements change
* Checking a HW fuse # properly hardware protected

Examples:
* Nook boot lock exploit (2012)

http://www.xda-developers.com/android/patch-this-barnes-and-noble-nook-tablet-hardware-protection-compromised/
* Many car tuning ECU cables/software, ‘Magic’ authentication allows firmware mods,

changing car keys, mileage

Mitigation:

* Secure chips can disable or lock JTAG

* At least use some device unique authentication

* Better to have ‘debug upgrade’ than debug built-in
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3DS

separately. This means that each key in the keysector aligns
with a block that is encrypted completely separately from all
of the other aligned keys, allowing us to move the keys into
any position we want while still decrypting properly.
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If we try enough keys and ARMOY firmware binary versions,
there 1s a high probability that we will eventually find one
that decrypts the ARM9Y9 firmware binary deterministically
such that the entrypoint is a branch instruction to another
memory address where a payload can be placed. We found, by

https://arxiv.org/pdf/1802.00092.pdf
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2. Key management

* Checking key usage
* Signing development boot loaders with production keys

* Crypto sanitization :
* After the boot code uses cryptographic engines they may become available for generic code
* State can be reused, registers may be read
* Attack: create more signatures, decrypt/encrypt more code

Examples
Samsung Galaxy S3 versus Exynos dev board boot loader
3DS clearing issue in FW 8.1.0: https://arxiv.org/pdf/1802.00092.pdF

Mitigation:

* Understand the value of all key material and signatures. Act accordingly.

* Clear registers of crypto engines and any other memory used for storing sensitive data
* https://nvipubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
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1. Wrong use of crypto

* Know and understand the weaknesses of the algorithms and protocols used
 Decryption # Authentication

Examples

* Nokia DCT4 2" stage loader u_2nd.fia could be patched to load unencrypted 3™ stage
http://www.dejankaljevic.org/download/dct4_rd.zip 2002/2005

* RSA small exponent signature verification

* Amlogic forgot HMAC: https://fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html

+ 3DS Key shuffling attack

Mitigation:
* Cryptographic review

riscurc
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1. Wrong use of crypto

« ECDSA is a signature scheme
* Input: curve parameters, private key (dA), message (m), nonce (k)
* Output: signaturer,s

5. Calculate r = ;1 mod n. If r = 0, go back to step 3.
6. Calculate s = k' (2 + rd4) mod n.If s = 0, go back to step 3.

* Nonce reuse: dA =(m1*s2 - m2%*s1)/ (r*(s1 -s2)) modn

riscurc
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1. Wrong use of crypto
PS3 Epic Fall

Sony’s ECDSA code

riscurc

int getRondomNWber()
return Y. // chosen by fair dice roll.

/| quaranteed to be random.

Source: http://events.ccc.de/congress/2010
Console Hacking 2010
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Now what?

* (Securely) booting a system is a complex operation
* In the field patching of boot components is practically very hard -
impossible

* Security researchers: learn hw attacks, explore attack surface
* Developers: secure dev practices, limit attack surface, test!
* Integrators: ask developers/third party to provide assurance on security

riscurc
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