Speculative Execution Vulnerabilities:
From a Simple Oversight to a Technological Nightmare

Raoul Strackx

raoul.strackx@cs.kuleuven.be

@raoul_strackx

imec-DistriNet, KU Leuven, Celestijnenlaan 200A, B-3001 Belgium

Hardwear.io, June 14, 2019

DistriN=t


raoul.strackx@cs.kuleuven.be
@raoul_strackx

Introduction

2018 started very terrifying/exciting. . .

e Spectre: Extract data from running
processes

e Meltdown: Read full RAM contents

2/68 Raoul Strackx Speculative Execution Vulnerabilities D | Strl N :t



Introduction

...and continued along the same path

Spec. Store Bypass
(variant 4)

Rogue System Lazy FP Bounds Check

Register Read SpectreRSB M\croarchitec_tural
(Variant 3a) State Restore Bypass Store Data Sampling
t t t t t t }
Jan 3,'18 May 21, '18 June 13, '18 July 10, '18 July 24,'18 Aug 14, '18 May 14, '19

3/68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Introduction

Comparing Foreshadow/Meltdown/Spectre/. ..

Title CVE SA Severity Disclosure Date
65 Microarchitectural Data Sampling CVE-2018-12126, INTEL-SA-00233 Medium 2019-05-14

CVE-2018-12127,
CVE-2018-12130,
CVE-2019-11091

7.3 L1 Terminal Fault CVE-2018-3615, INTEL-SA-00161 High 2018-08-14
CVE-2018-3620,
CVE-2018-3646

43 Rogue System Register Read CVE-2018-3640 INTEL-SA-00115 Medium 2018-05-21
43 Speculative Store Bypass CVE-2018-3639 INTEL-SA-00115 Medium 2018-05-21
56 Branch Target Injection CVE-2017-5715 INTEL-SA-00088 Medium 2018-01-03
5.6 Bounds Check Bypass CVE-2017-5753 INTEL-SA-00088 Medium 2018-01-03
56 Rogue Data Cache Load CVE-2017-5754 INTEL-SA-00088 Medium 2018-01-03

Figure: source: https://software.intel.com/security-software-guidance/software—guidance

4/68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t


https://software.intel.com/security-software-guidance/software-guidance

Introduction

Foreshadow Attacks

® Independently discovered
e Team of KU Leuven, Belgium

e Team of Universities of Technion,
Michigan and Adelaide and DATA61

e Intel discovered other variants

Y

foreshadowattack.eu

THE UNIVERSITY
Technion UNIVERSITY OF D #ADELAIDE '
LR ¥ Technion phiviicinior )

5/68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N :t

DNM ‘


foreshadowattack.eu

Introduction

Foreshadow Attacks

Independently discovered —
Team of KU Leuven, Belgium

Team of Universities of Technion,
Michigan and Adelaide and DATA61

Intel discovered other variants

foreshadowattack.eu

| DATA |
—~ . Xl THE UNIVERSITY
ROEREY ¥ echnion tnwveemy or BBAGHADE &1

5/68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



foreshadowattack.eu

Introduction

These were vulnerabilities in the processor itself
Hence, virtually every application was effected!

This led to various reactions

6 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N - t



Introduction

How we told our upper management at the university (Nov '17). ..

Figure: source: https://pin.it/k4353t23xiiged

7 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Strl N :t


https://pin.it/k4j53t23xiiqcd

Introduction

How we told Intel (Jan ’18)..

Figure: source: https://pin.it/k43j53t23xiigcd

v
8/68 Raoul Strackx Speculative Execution Vulnerabilities D | Stn N =t


https://pin.it/k4j53t23xiiqcd

Introduction

How IT professionals reacted (to this class of vulnerabilities). . .

9 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Strl N :t


https://pin.it/hehzyfhdsvnlkc

How Intel stock owners reacted. ..

RRRRR Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



How do these attacks work, in general?

11/68 Raoul Strackx Speculative Execution Vulnerabilities DIStI‘I N _t



Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

... Side-channel attacks

Figure: The Italian Job (source: imdb. com)

v
12/68 Raoul Strackx Speculative Execution Vulnerabilities D | Strl N :t


imdb.com

Foreshadow-0S
Foreshadow-VMM
Foreshadow-SGX

Attacker

SAFECRACKING:GONTAC

first oint

action: rotate & listen

carrier: sound
<—

Charlize Theron Vault

Security flaw: Lever may produce sound

sources: https://home.howstuffworks.com/, imdb.com

13/68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N :t


https://home.howstuffworks.com/
imdb.com

How does the Foreshadow attack work?

14 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N - t



One vulnerability to rule them all

Foreshadow-0S: Bare-metal
not-present pages
Foreshadow-VMM: VM guest page
tables

Foreshadow-SGX: Intel SGX
enclaves

Foreshadow-SMM: Attacking
System Management Mode

— The target heavily affects how the
attack can be launched

15/68

Foreshadow-0S
Foreshadow-VMM
Foreshadow-SGX

MAKE ME A SANDWICH.
f WHAT? MAKE
IT YOURSELF.
SUDO MAKE ME /
A SANDWICH.
OKAY.

LS
% A

Figure: source: xkcd.com/149/

Luckily, these attacks can “only” read
privileged memory

Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t


xkcd.com/149/

— ForeShadow-os

Foreshadow-OS: Reading L1 data through bare-metal
not-present pages...

16 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N - t



— ForeShadow-os

Attacker Victim

action: none
_—

carrier: cache changes

9

Foreshadow-OS Other process’ memory

Security flaw: OoO execution leaves traces of transient instructions

17 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

Attacker Victim

action: none
_—

carrier: cache changes

9

Foreshadow-OS Other process’ memory

Security flaw: OoO execution leaves traces of transient instructions

18 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

Setting: Attacker-controlled process

Attack model:
e Attacker operates within a malicious

process [ App “ App m ring 3
e Benign, bare-metal kernel ensures ( kernel ‘ ring 0
process isolation : p— E[W
Attack objective: & J

@ Attacker controlled/vulnerable () Benign component

e Read data outside the process’
address space

19 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

Background: How does process isolation work. ..

e MMU: map virtual address space to

physical memory I /

¢ Protect physical memory by:

* Not providing a mapping -

® Restricting access (e.g., U/S-bit)

20 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

Background: How does process isolation work. . .

e MMU: map virtual address space to
physical memory
e Protect physical memory by:
* Not providing a mapping
® Restricting access (e.g., U/S-bit)

page table

virtual address
walk

physical address

page fault

20 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

Background: How does process isolation work. ..

Bit Contents

Position(s)

o) Present; must be 1 to map a 4-KByte page

1 (RW) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)

2(Urs) Usﬁe)r/supervisor, if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section
4

3(PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by
this entry (see Section 49.2)

4(PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9.2)

5(8) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)

6(0) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)

7 (PAT) Indirectly determines the memory type used to access the 4-KByte page referenced by this entry (see Section 4.9.2)

8(G) Global; if CR4.PGE = 1, determines whether the translation s global (see Section 4.10); ignored otherwise

119 Ignored

(M-1x12 | Physical address of the 4-KByte page referenced by this entry

51M Reserved (must be 0)

5852 Ignored

62:59 Protection key; if CR4.PKE = 1, determines the protection key of the page (see Section 4.6.2);ignored otherwiise

63 (XD) If IA32_EFERNXE = 1, execute-disable (i 1, instruction fetches are not allowed from the 4-KByte page controlled by
this entry; see Section 4.6); otherwise, reserved (must be 0)

Figure: source: Intel 64 and IA-32 architectures software developer’'s manual

21 /68 Raoul Strackx Speculative Execution Vulnerabilities DIStI‘I N _t



Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

Background: How does process isolation work. ..

Bit Contents
Position(s)
(o ®) Present; must be 1 to map a 4-KByte page
((1®Rm) | Readrurite;if 0, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 46)
(2ws) User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section
26y
3(PWT) | Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by
this entry (see Section 4.9.2)
4(PCD) | Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9.2)
S5(A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.)
6(0) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)
7 (PAT) Indirectly determines the memory type used to access the 4-KByte page referenced by this entry (see Section 4.9.2)
8(0) Global;if CR4.PGE = 1, determines whether the translation is global (see Section 4.10);ignored otherwise
119 lgnored
((-1312 | Pysical agdress of the 4-KByte page referenced by this entry
S1M Reserved (must be 0)
5852 Ignored
62:59 Protection key; if CR4PKE = 1, determines the protection key of the page (see Section 46.2);ignored otherwiise
63(XD) | IfIA32_EFERNXE = 1, execute-disable (f 1, instruction fetches are not allowed from the 4-KByte page controlled by
this entry; see Section 4.6); otherwise, reserved (must be 0)

Figure: source: Intel 64 and IA-32 architectures software developer’s manual

21 /68 Raoul Strackx Speculative Execution Vulnerabilities DIStI‘I N :t



Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

Background: How does process isolation work. . .

When P-bit is 0, the entry’s physical address field may be
re-used to keep track of the swapped out page

22 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



— ForeShadow-os

Attacker Victim

action: none
—_—

carrier: cache changes

9

Foreshadow-OS Other process’ memory

Security flaw: OoO execution leaves traces of transient instructions

23 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

The message carrier: How does the cache work?

Caching
¢ Problem: Memory performance
grows much slow than CPU ]
performance /“T/
e Solution: fast but small caches }%;222?21';?:223
® Intel 486: L1 cache ('89) ° M
¢ |ntel Pentium Pro: L1 & L2 cache JPUE cotl s nanta R |
('95)

® Today: L1, L2 & L3 caches

24 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

The message carrier: How does the cache work?

Caching
e Problem: Memory performance
grows much slow than CPU
performance
e Solution: fast but small caches

® |ntel 486: L1 cache ('89)

® |ntel Pentium Pro: L1 & L2 cache
('95)

® Today: L1, L2 & L3 caches

24 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

The message carrier: how does the cache work?

virtual address

["cache setindex | [ cache line offset
& 2 H

5
. 8 ways
e Cache lines: 64 B [
set0 > data | 139 | [dota | to | [ dota | tag | [ data | %89 | [ doto | tog | [ dota | tay | [ deta | a9 | [ cota | 9 |
o | 1: sett | dato | tag | [[doto | o0 | [data | tag ] [ oo | to9 | [ dota | a9 | [ date | tou | [doto | o9 | [vate | ta9 ]
. . set2 dota | tag | [ data | tag | [ data | tag | [ data | tag | [ data | tag | [ data | tag | [ data | tag | [ data | tag |
virtually-indexed,
set63 >{ data | 139 | [dota | to | [dote | ta9 | [oata | 159 | [ dote | to | [ dota | tas | [ data | a0 | [ cota | 9 |

physically tagged \ \ \ \ ]
® 64 sets, 8 ways N

["data | (cache line)

25 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

The message carrier: how does the cache work?

I virtual address ‘ cache set index H cache line offset
63 12 11 65 0
8 ways
—
64 sets
seto data | tag | [ data | tag | [ data | tag | [ data | tag | [ data | tag | [ data | tag | [ data | tag || data | tag |
set 1 data | tag | [ data | tag | [ data | tag | [ data | tag || data | tag | [ data | tag | [ data | tag | [ data | tag |
set 2 data | tag | [ data | tag | [ data | tag | [ data | tag || data | tag | [ data | tag | [ data | tag | [ data | tag |
set 63 data | tag | [ data | tag | [ data | tag | [ data | tag | [ data | tag | [ data | tag | [ data | tag | [ data | tag |

l l [ [ [ l l |

physical address tag comparator

[ data ‘ (cache line)

26 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N :t



Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

The message carrier: How does the cache work?

memory | timing (in cycles) | std. dev.
Manipulating the cache: L1 46 1.25

e Data accesses: load in L1-L3 cache L2 53 1.14
RAM 246 6.22
e clflush: Flush data from caches

— Any timing results <146 cycles clearly
hits the cache

27 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

Attacker Victim

action: none
_—

carrier: cache changes

9

Foreshadow-OS Other process’ memory

Security flaw: OoO execution leaves traces of transient instructions

28 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

Background: Out of Order Execution

e Problem: We want more speed!
¢ Solution: Start executing instruction as soon as possible!

® Pipeline instructions
e Qut-of-order execution of pops
® (Speculative execution) ~ see Spectre-like attacks

29 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

Background: Out of Order Execution

Out-of-order execution FeETEoERE
e Split instruction in pops 2 ;
e Use multiple execution ports L T
e Execute pop as soon as possible U H D D Ht ports
e Reorder ensures results/exceptions S
are visible in-order of instruction
stream

pops

commit instruction

30 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

The Security Flaw: Transient Execution

Transient execution: instruction stream PRSI NEATE IR | LTI AR IETeTe
e Faults are detected at last moment \ﬁ% ﬁﬁ ﬁ;
¢ |nstruction that should never be S aRpE
executed, may already have started H H H H H H ﬂ o
e Processor rolls back architectural _—
changes

re-order buffer

commit instruction

Key issue: Not all side-effects of “unreachable instructions” are rolled back
correctly! (e.g., cache changes)

31/68 Raoul Strackx Speculative Execution Vulnerabilities DIStI‘I N _t



Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

The Security Flaw: Transient Execution

<instr>] [ test (%al), 0x1 | [ movb (ptr), %al |

instruction stream

Transient execution:
* Faults are detected at last moment O e
M

¢ |nstruction that should never be l
executed, may already have started H H D D H E ﬂ"

* Processor rolls back architectural .
changes

Key issue: Not all side-effects of “unreachable instructions” are rolled back
correctly! (e.g., cache changes)

31/68 Raoul Strackx Speculative Execution Vulnerabilities DIStI‘I N _t



Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

The Security Flaw: Transient Execution

Transient execution:
e Faults are detected at last moment R T (7=

exception handler

2: nop

e Processor rolls back architectural

changes
Key issue: Not all side-effects of “unreachable instructions” are rolled back

correctly! (e.g., cache changes)

() Normal instructions () Transient sequence
([ raulting instruction  (T) Never executed

¢ |nstruction that should never be e — s
executed, may already have started 4 —— ot (oracTe), a1
‘,?_g 1: movb %al, (oracle) e

31/68 Raoul Strackx Speculative Execution Vulnerabilities DIStI‘I N _t



— ForeShadow-os

Attacker Victim

action: none
_—

carrier: cache changes

9

Foreshadow-OS Other process’ memory

Security flaw: OoO execution leaves traces of transient instructions

32 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

Putting it all together

1int8_t xoracle =
2int8_t xnp_ptr =
3

/' Step 1: Remove variable oracle from cache
5clflush( oracle );

6
71/ Step 2: Trick system in sensitive data in L1 but PTE present bit to 0
clflush (oracle) 8

exception handler

2: nop S 1 3
[ =] (O vormalinstructions (7] Transient sequence 14// suppress fault
boo D Faulting instruction D Never executed 15

16// Step 4: is oracle cached?
17if ( time_access( oracle ) < 146)
18 print( "sensitive data == 11" );
19else
20 print( "sensitive value |= 1");

H movb (np ptr), %al | — » rdtsc 9{/ Step 3: attempt to read not present memory
E-S test %al, 0x1 10if (*np_ptr==1)
E'§ je 1; movb (oracle), %al 11 // place oracle variable in the cache iff xnp_ptr ==
° jmp 500 _ .
& § | 1: movb %al, (oracle) rdtsc 12 _tmp = xoracle;
&8
LN
x
o

33 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Putting it all together

micro-architectural behavior

architectural behavior

page table
lookup

virtual address physical address

[ page fault )

33/68 Raoul Strackx

Speculative Execution Vulnerabilities

Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

1int8_t xoracle = ...;
2int8_t xnp_ptr = ..;
3

/' Step 1: Remove variable oracle from cache
5clflush( oracle );
6
71/ Step 2: Trick system in sensitive data in L1 but PTE present bit to 0
8

9// Step 3: attempt to read not present memory
10if (*np_ptr==1)
11 // place oracle variable in the cache iff xnp_ptr ==
12 _tmp = xoracle;
13
14// suppress fault
15
16// Step 4: is oracle cached?
17if ( time_access( oracle ) < 146)
18 print( "sensitive data == 11" );
19else
20 print( "sensitive value |= 1");

OistriN=t



Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

Increasing the bandwidth of the attack

1int8_t xoracles = ...;

2int8_t xnp_ptr = ...; // the secret

3int8_t _tmp;

4

5// Step 1: Remove oracle slots from cache
6for (inti=0;i<256; ++i)

7 clflush( &oracles[4096 = i] );

8

<flush oractes> amion anter T oo stot 10 9// Step 2: Trick system in sensitive data in L1 but PTE present bit to 0
s e st 10
S ] M |oracle clot ¢ 11// Step 3: attempt to read not present memory
12_tmp = oracle[4096 * (xnp_ptr)];
L oracte stot 255 13

v esaten 14// suppress fault
15
16// Step 4: which oracle slot is cached?
17for (inti=0;i<256;++i){
18 if (time_access( oracle[4096 x* i] ) < 146 )
19 print( "s«np_ptr = %i\n", i );
20}

34 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

Increasing the bandwidth of the attack

<flush oracles>

exception handler

movb (np ptr), %al —_—

<for each oracle slot>

shl $12, S%srax

rdtsc

movq (oracle, %rax),%rdi

movb (oracle), %al

out-of-order
execution window

(7] Normal instructions [T Faulting instruction (] Transient sequence () Never executed

35 /68 Raoul Strackx

rdtsc

! oracle slot #0

- I | oracle slot #1

[ Joracle slot #255

Speculative Execution Vulnerabilities D | Strl N _t



Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

Who’s Affected?

Vulnerable processors:
¢ Intel Core processors of the last 7

intel.

e Intel server processors
e NOT AMD, not ARM

36 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N :t



Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

Impact of this attack

Requirements:
e Secretdatain L1D
e Page must be not-present

~s Most difficult attack, “easiest” to
understand
~» Low impact!

37 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0OS

Mitigations

e Long term: Replace chips!
e Short term:

* No readily apply-able microcode
patch!
® Software approaches:
® Ensure PTE entry do not point to
existing physical address
® Use new instruction:
IA32_FLUSH_CMD to flush L1D
cache

38 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

Mitigations

e Long term: Replace chips!

micro-architectural behavior

e Short term: I oo
. . L)
* No readily apply-able microcode
patch ' architectural behavior
° SOﬂWare approaCheS: virtual address palgcsl(‘:s‘e physical address
® Ensure PTE entry do not point to
existing physical address
® Use new instruction:
IA32_FLUSH_CMD to flush L1D (_page fautt )
cache

38 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

Mitigations

OVERALL MEDIA { DATA/FINANCE { RESPONSIVE- WebXPRT 2015 3DMark- (SPECint_rate_basei {SPECint_rate_basel
SCORE PRODUCTIVITY CREATION | |  ANALYSIS Overall Score | | Skydiver (overall) | | 2006 (n copy) 2006 (1 copy)
SYS! k* 2014 SE
120%
100% 100% | | 100% 99% | | 100% 102% | {100% 100% | | 100% 100% | |100% 100% | | 100% 100% | | 100% 99% | | 100% 100%
100%

Relative Performance (HT enabled)
(Pre Mitigation / Post Mitigation)

80%
60%
40%
20%
o% i X FAAN v

Figure: source:
https://www.intel.com/content/www/us/en/architecture-and-technology/11tf.html

L} ; } X, 4N "

[ Pre Mitigation I Post Mitigation

v
39 /68 Raoul Strackx Speculative Execution Vulnerabilities D | St rl N - t


https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html

— P 56X

Foreshadow-VMM: Reading physical L1 data through
virtualized not-present pages...

40 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N - t



— P 56X

Attacker Victim

action: manipulate PT

carrier: cache changes

9

Foreshadow-VMM Other VM’s memory
Security flaw: OoO execution leaves traces of transient instructions

41 /68 Raoul Strackx Speculative Execution Vulnerabilities DIStI‘I N _t



Foreshadow-0S
Foreshadow-VMM
Foreshadow-SGX

Attacker Victim

action: manipulate PT

carrier: cache changes

9

Foreshadow-VMM Other VM’s memory
Security flaw: OoO execution leaves traces of transient instructions

42 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0S
Foreshadow-VMM
Foreshadow-SGX

Setting: Attacker-controlled VM

| | | o
e Multiple VMs on one physical server ——

ring 0

e Attacker-controlled VM
* Hypervisor ensures VM isolation L i :
~» Goal: read other VMs data ‘ TPM m Mem

@ Attacker controlled/vulnerable () Benign component

| kernel kernel

hypervisor ‘ring -1

HDD

43 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N :t



Foreshadow-0S
Foreshadow-VMM
Foreshadow-SGX

How do extended page tables work

¢ Adds another layer:

® PT: guest-virtual address — , /

guest-physical address

® EPT: guest-physical address — %ZZZZ? e

host-physical address

e EPT: 4-level page table

44 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N :t



Foreshadow-0S
Foreshadow-VMM
Foreshadow-SGX

How do extended page tables work

¢ Adds another layer:
® PT: guest-virtual address — quest virtual
guest-physical address e
® EPT: guest-physical address —
host-physical address

e EPT: 4-level page table

host physical
address

extended
age table
p: I?)okup > page table
gues! lookup
physical
address

) Y
(" page fault : (" page fault )
L J

VM Hypervisor

44 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0S
Foreshadow-VMM
Foreshadow-SGX

Attacker Victim

action: manipulate PT

carrier: cache changes

9

Foreshadow-VMM Other VM’s memory

Security flaw: OoO execution leaves traces of transient instructions

45 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0S
Foreshadow-VMM
Foreshadow-SGX

The Security Flaw: Interpreting guest-physical as host-physical
addresses

* VM-level: non-present PTE entry

* VMM-level: irrelevant i archiecural behavior
. L1D cache
e Upon access: \—.4
® Tag data access as a violation architectural behavior
® Pass guest physical address as suest v w Grenged host ghysc
host physical address to L1D pysical N0
cache ‘
¢ Continue transient execution!! |
~» This breaks the VM’s address (ewer ) (paseroat)

space abstraction!

46 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0S
Foreshadow-VMM
Foreshadow-SGX

Foreshadow-VMM: The exploit

1int8_t xoracles = ...;
2int8_t xnp_ptr = ...;
3int8_t _tmp;

4
5// Step 1: Setup PT to physical address of interest
6
71/ Step 2: Remove oracle slots from cache
8for (inti=0;i<256; ++i)
9 clflush( &oracles[4096 = i] );

exception handier i aracte stot %0 10

—— or cach aracte stots ; . - .
o — — o }12/, Step 3: Wait for sensitive data in L1D

13// Step 4: attempt to read not present memory
14 _tmp = oracle[4096 = (xnp_ptr)];

15

16// suppress fault

17

18// Step 5: is oracle cached?

19for (inti=0;i<256; ++) {

20 if (time_access( oracle[4096 * i] ) < 146)
21 print( "«np_ptr = %i\n", i );

22}

47 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0S
Foreshadow-VMM
Foreshadow-SGX

Impact of Foreshadow-VMM
Requirements:
e Attacker must have full VM under her control
e Secret data must reside in L1D
~~ Modest impact!

48 /68 Raoul Strackx Speculative Execution Vulnerabilities

OistriN=t



Foreshadow-0S
Foreshadow-VMM
Foreshadow-SGX

Impact of Foreshadow-VMM
Requirements:
e Attacker must have full VM under her control
e Secret data must reside in L1D «— This may not be that complicated
~~ Modest impact!

48 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0S
Foreshadow-VMM
Foreshadow-SGX

Attacker Victim

action: manipulate PT

carrier: cache changes

9

Foreshadow-VMM Other VM’s memory
Security flaw: OoO execution leaves traces of transient instructions

49 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0S
Foreshadow-VMM
Foreshadow-SGX

Intel HyperThreading as an enabler

* Problem: Execution ports are still
under-utilized
e Solution: Split physical core in two
e Duplicated HW:
e register file
® re-order buffer execution ports
. PR
e Shared:
e Execution ports
® L1 cache! (and other levels)

(St

instruction stream

[Sinstr) [<instr=]
CLICIL) wos
Y

Y

re-order buffer

commit instruction

~+ Performance increase of up to 30%'

https://www.cs.sfu.ca/~fedorova/Teaching/CMPT886/Spring2007/papers/hyper-threading.pdf

50 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t


https://www.cs.sfu.ca/~fedorova/Teaching/CMPT886/Spring2007/papers/hyper-threading.pdf

Foreshadow-0S
Foreshadow-VMM
Foreshadow-SGX

Intel HyperThreading as an enabler

e Problem: Execution ports are still
u nder'utl Ilzed instruction stream

. . . . instruction stream
e Solution: Split physical core in two _‘ﬁ A Blels
e Duplicated HW: | \ '
® register file
® re-order buffer execution ports

e .. AW
e Shared:

e Execution ports

e L1 cache! (and other levels) I rogical core 0

|4 1ogical core 1

re-order buffer

commit instruction

commit instruction

~+ Performance increase of up to 30%'

https://www.cs.sfu.ca/~fedorova/Teaching/CMPT886/Spring2007/papers/hyper-threading.pdf

50 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N :t


https://www.cs.sfu.ca/~fedorova/Teaching/CMPT886/Spring2007/papers/hyper-threading.pdf

Foreshadow-0S
Foreshadow-VMM
Foreshadow-SGX

Impact of Foreshadow-VMM (with HT enabled)
Requirements:
e Attacker must have full VM under her control
e Secret data must reside in L1D «+ Just have a little bit of patience!
~+ High impact!

51 /68 Raoul Strackx Speculative Execution Vulnerabilities DIStI‘I N _t



Foreshadow-VMM

Mitigations

Mitigations:
* Long term: Replace chips!
e Short term:
* Make sure no secrets are in L1D cache
— Flush L1D upon every VM-entry

— Make sure no two different VMs execute on same physical
core

® Patch VM scheduler
® Disable HyperThreading

52 /68 Raoul Strackx Speculative Execution Vulnerabilities

OistriN=t



Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

Mitigations — Disabling HyperThreading

SPECInt"2017_ | { SPECtpr2017_ SPECint"2006_ | | SPECint"2006_} [ STREAM-Triad | {Intel distribution:} {SPECvirt 52013} { HammerDB v.23 SPECjbb 2015
rate_base rate_base rate_base (n copy)] {rate_base (1 copy), (M8/s) LINPACK postgreSQL
120%
@ 100% 100% 101% 100% 100%  ggop 100% 103% 100% 100% 100% 100% 100%
2~ 100%
[ & 87% 90%
82%
g o 80%
S 80%
eI 69%
O~
e =
60%
28
=
3
Q= 40%
@
20%
0% .. % o \. 4N, g g SN 7\ SN >4
I Mitigated HT ON - [ Mitigated HT OFF -
Guest operating Guest operating systems
systems trusted NOT trusted

Figure: source:
https://www.intel.com/content/www/us/en/architecture-and-technology/11tf.html

v
53 /68 Raoul Strackx Speculative Execution Vulnerabilities D | St rl N - t


https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html

Foreshadow-0OS
Foreshadow-VMM
Foreshadow-SGX

Attacks

Mitigations — Updating VM scheduler

N

SPECint_rate_base 2006 (n copy) in 1 VM SPECfp_2006_rate_base (n copy) in 1 VM e Web Server Workload

=
T -
9T 120%
=8
[
5 0 00 100.0% 99.5% 100.0% 99.5% 100.0%
[~ 93.0%
=
v 8

80%
v o
5 a

~

Ec
=5 6%
25
t®
9
a5 %
o=
22
=
% a  20%
<

0%

I HT_On, Hyper-V with Classic Scheduler I HT_On, Hyper-V with Core Scheduler, L1TF Mitigated

Figure: source:
https://www.intel.com/content/www/us/en/architecture-and-technology/l1ltf.html

v
54 /68 Raoul Strackx Speculative Execution Vulnerabilities D | St rl N - t


https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html

Foreshadow-SGX: Dismantling Intel SGX’s security
objectives

55 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N - t



Foreshadow-0S
Foreshadow-VMM
Foreshadow-SGX

Attacker Victim

action: manipulate PT

carrier: cache changes

9

Foreshadow-SGX SGX enclave memory

Security flaw: OoO execution leaves traces of transient instructions

56 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0S
Foreshadow-VMM
Foreshadow-SGX

Background: Intel SGX

* Problem: Huge software TCB . Sgx enclaves
. App App App App ring 3
e Solution: Protected-Module | ]
Architecture (e.g., Intel SGX) kernel } ring 0
e Only trust Intel hardware/enclaves [ hypervisor \ ring -1
* Use cases: ( system management mode | ring -2
® protecting finger prints : _ -
e DRM \ management engine ring -3
® Secure cloud-based processes TPM m Mem || HDD
[} L

@ Trusted component  (O) Untrusted component

57 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0S
Foreshadow-VMM
Foreshadow-SGX

Background: Intel SGX

sgx enclaves

App App ' App App ring 3

Key properties: kernel } ring 0
* Isolation [ hypervisor | ring -1

* Secure Storage system management mode | ring -2

e Attestation

\ management engine ring -3

e [T vem | woo

@ Trusted component  (O) Untrusted component

58 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Background: Intel SGX

Isolation:
e Enclaves live in process’ address
space
¢ Only accessible through specific
entry points

e Abort page semantics: Reading
enclave memory outside the encl
results in —1.

59 /68 Raoul Strackx

Foreshadow-0S
Foreshadow-VMM
Foreshadow-SGX

ave

Code

Stack

Data

Speculative Execution Vulnerabilities

OistriN=t



Foreshadow-0S
Foreshadow-VMM
Foreshadow-SGX

Background: Intel SGX

call entrypoint

Isolation:

e Enclaves live in process’ address \, ‘Sign—t sign(uint8_t *buff);
space

e Only accessible through specific
entry points

e Abort page semantics: Reading
enclave memory outside the enclave key_t signing_key;
results in —1. /

access key

59 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0S
Foreshadow-VMM
Foreshadow-SGX

Background: Intel SGX

Secure Storage:
e Enclave die at loss of power
e Seal/Unseal confidential data

e Key derivation ensure unique key
per enclave key

(colde )( dalta )( size )( - (P Se]cret)

kdf

60 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0S
Foreshadow-VMM
Foreshadow-SGX

Background: Intel SGX

Attestation:
® Prove an enclave has been created
correctly
e Both locally as remotely
® |ocal attestation as building block
for remote attestation
secure communication

e EPID attestation protocol can \»chamel
ensure that attestation responses
cannot be linked

local attestation

61 /68 Raoul Strackx Speculative Execution Vulnerabilities DIStI‘I N _t



Foreshadow-0S
Foreshadow-VMM
Foreshadow-SGX

Background: Intel SGX

Attestation:
e Prove an enclave has been created

correctly remote attestation
A
e Both locally as remotely

® |ocal attestation as building block
for remote attestation

e EPID attestation protocol can

ensure that attestation responses
cannot be linked

QE

(Intel)

Long-term secre!

Privacy friendly
attestation protocol

61 /68 Raoul Strackx Speculative Execution Vulnerabilities DIStI‘I N _t



Attacker Victim

action: manipulate PT

carrier: cache changes

9

Foreshadow-SGX SGX enclave memory

Security flaw: OoO execution leaves traces of transient instructions

62 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0S
Foreshadow-VMM
Foreshadow-SGX

The attack approach

micro-architectural behavior

e Bypass abort page semantics [ uocoe |

e Ensure data in L1D:
lookup

e Zero-step through enclave virtual address
f page fault : \\ abort page )

physical address

e Some instructions load enclave
data in L1D as a side effect (e.g.,
eldu)

63 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-0S
Foreshadow-VMM
Foreshadow-SGX

Impact of this attack

Requirements:
e Mark enclave page not-present
e Call enclave/issue e1du instruction

~ Completely breaks remote/local

attestation, sealed storage, enclave
isolation

~ Leaked Intel long-term SGX

attestation keys

64 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Foreshadow-SGX

Mitigations

¢ Long term: Replace chips!
e Short term:

® TCB recovery: increase CPU version number
® Ensuring no secrets in L1 when enclave are not executing
® Include status of HT during key derivation

65 /68 Raoul Strackx Speculative Execution Vulnerabilities

OistriN=t



Speculative Execution Attacks: Much ado about nothing?

No!
e Meltdown / Foreshadow-VMM/SGX are really powerful attacks
Yes (because we were lucky!)
e “Easiest” attacks, also easiest to mitigate
® Some (but very few) malware samples found abusing these exploits
¢ Mitigations were (roughly) in place at the time of disclosure
— I’m more worried about the next big speculative execution attack

66 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Conclusion

Conclusion

¢ Foreshadow first transient execution attack that breaks the virtual memory
abstraction, MDS are the second

® Speculative execution cannot be removed completely without a significant
performance hit

e We have no idea how much leaky optimizations there are present in modern
processors

® Modern x86 processors have become too complex to completely understand
e |f possible, disable HyperThreading!

67 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t



Conclusion

Thank you!

Thank you! Questions?

raoul.strackx@cs.kuleuven.be
@raoul_strackx

68 /68 Raoul Strackx Speculative Execution Vulnerabilities D | Stl‘l N _t


raoul.strackx@cs.kuleuven.be
https://twitter.com/raoul_strackx

	Introduction
	Attacks
	Bare-metal not-present pages
	Foreshadow-VMM: Exploiting guest-virtual-to-guest-physical page table mapping
	Foreshadow-SGX: Attacking Intel SGX enclaves

	Outlook
	Conclusion

