
Baptiste Boyer

October 24th, 2024

BLE GATT Fuzzing
HardwearIO

WHOAMI

2

Baptiste Boyer /🇫🇷 🇷🇪
Junior R&D Engineer at Quarkslab

Embedded/Wireless topics

Goals

GOALS

4

Framework Evaluation & Tool Development

Context: A new framework has been developed, WHAD (Wireless HAcking Devices)
Objectives: Evaluate the internal framework

 Create a tool based on WHAD to assess its robustness, a fuzzer!

Unexplored Security Landscape

Context: A lot of security research has been done on BLE but ATT/GATT layers
 remain relatively unexplored

Objectives: Conduct an in-depth security assessment of these layers with our tool

Targets?

ScenariosCorner cases,
Unspecified

behaviors, etc.

METHODOLOGY

5
Fig: Adopted methodology

Specification
Analysis

Attack Scenarios
Elaboration

Fuzzer
Elaboration

Development of
GATT servers

Fuzzer Running

Results Analysis
Vulnerability
Reporting

Targeted BLE stacks

Bugs, crashes, etc. Code review,
Vulnerability identification,

PoC

What is BLE?

BLE

BLE: Bluetooth Low Energy

Fig: BLE Protocol Stack

Host
Controller
Interface

(HCI)

7

▶ Client-Server architecture

▶ Defines how data is represented and the methods by which that data can be read or written

▶ Attribute = data structure

ATT LAYER

UUID Value PermissionsHandle

8

2 Bytes 2 or 16 Bytes Variable length Implementation
specific

Client Server

▶ 30 ATT Protocol Data Unit (PDU) defined to exchange data

▶ 6 Types: Commands, Requests, Responses, Notifications, Indications, Confirmations

▶ ATT PDU Format

ATT LAYER

9

Parameters Authentication SignatureOpcode

1 Byte 0 to (ATT_MTU - X) 0 or 12 Bytes

▶ Long Attribute values i.e. size(ATT_Value) > (ATT_MTU - 1)

▶ To write entire value: ATT_PREP_WRITE_REQ & ATT_EXECUTE_WRITE_REQ

▶ ATT_PREP_WRITE_REQ Format

ATT LAYER

10

Handle Offset ValueOpcode = 0x16

1 Byte 2 Bytes 0 to (ATT_MTU - 5)2 Bytes

▶ Concrete utilization of Prepare Write and Execute Write Requests

ATT LAYER

11

ATT_PREP_WRITE_REQ(0x03, 0x0, “Today is my ”)

ATT_PREP_WRITE_RSP(0x03, 0x0, “Today is my ”)

Client Server

Fig: Write Long Attribute Values example

ATT_PREP_WRITE_REQ(0x03, 0xD, “hardwear.io presentation day!”)

ATT_PREP_WRITE_RSP(0x03, 0xD, “hardwear.io presentation day!”)

ATT_EXECUTE_WRITE_REQ(0x01)

ATT_EXECUTE_WRITE_RSP()

GATT LAYER

▶ Defines a framework built upon ATT layer of procedures and formats

Service : collection of data and associated behaviors to accomplish a function
● Characteristic: attribute used in a service along with properties and configuration information
● Descriptor : contains related information about the Characteristic Value

Profile
Service
Characteristic Characteristic

Value Value

12

Descriptor

Fig: GATT Profile Hierarchy

Attributes

ATT_ERROR_RSP(“ATT_READ_BY_TYPE_REQ” , 0x0211,
“Attribute Not Found”)

ATT_READ_BY_TYPE_REQ(0x200, 0x0214, “Characteristic”)

ATT_READ_BY_TYPE_REQ(0x0211, 0x0214, “Characteristic”)

▶ 11 features and procedures

Server Configuration, Primary Service Discovery, Relation Discovery, Characteristic Discovery,
Characteristic Descriptor Discovery, Reading/Writing a Characteristic Value,
Reading/Writing a Characteristic Descriptor, Notification/Indication of a Characteristic Value

ATT_READ_BY_TYPE_RSP(0x07, 0x0210, 0x02, 0x212, “UUID1”)

GATT LAYER

13

Client Server

Fig: Discover All Characteristics of a Service

Attack Scenarios

Client

SCENARIO #1

Observation Scenario

“Once a client sends a request to a server, that client shall
send no other request to the same server until a response
PDU has been received.” (BLE Spec: Vol 3. Part F. 3.3.2)

Send another request before a response PDU has been
received

Server

ATT_REQUEST

ATT_REQUEST

ATT_RESPONSE

15
Ref: CVE-2019-19192 from SweynTooth

http://nvd.nist.gov/vuln/detail/CVE-2019-19192

SCENARIO #2

Observation Scenario

“A server may limit the number of prepared writes that it
can queue. A higher layer specification should define this

limit.” (BLE Spec: Vol 3. Part F. 3.4.6.1)
Send many Prepare Write Request

Client Server

ATT_PREP_WRITE_REQ

ATT_PREP_WRITE_REQ

ATT_PREP_WRITE_REQ

16

SCENARIO #3

Observation Scenario

Inconsistency of GATT server
First action done by the client is to discover the Services,

the Characteristics and the associated Descriptors
Trick the client by sending wrong responses

Service

Characteristic

Server Client

ATT_REQUEST

ATT_RESPONSE

17

Value Descriptor

Setup & Implementations

WHAD IS LOVE!

WHAD[1] is an open source framework for exploring, hacking
and more generally playing with common wireless protocols.

▶ Supports wireless protocols such as BLE, Zigbee or LoRaWAN.
▶ Supports different hardware: HCI device, nRF52, etc.
▶ A lot of features: sniffing, replaying, hijacking, etc.

WHAD can be used to:

▶ Craft and send legitimate or custom PDUs.
▶ Handle received PDUs easily.
▶ Populate and spawn a GATT server.
▶ Log packet exchanges in PCAP files.

19[1] https://whad.io/

FUZZING & MONITORING

20Fig: Fuzzer overview

Fuzzer illustration:

Targeted
stack

HCI

Web app
(Ntfy)

Log files

PCAP
files

WHAD Python

BLE

Attack
Monitoring

Serial (Protobuf messages)

Raspberry Pi

Fuzzer Python

Scenario
#1

#2
#3

#n

FUZZING & MONITORING

21

Strategy:

▶ No mutation, random strategy
▶ 1 fuzzing session to test 1 scenario
▶ Keep the connection during the whole session
▶ Basic feedback: disconnections, unresponsive stack, crashs

Waiting for
Responses

Legitimate PDU
Random PDU

Monitoring

FUZZING & MONITORING

22Fig: Scenario #1

Scenario #1: Monitoring system
Initialization

Connection Phase

Packets Crafting
PDUs Selection,
Random Strategy

Packets Sending
Packets Validation

Response PDUs,
Count unanswered PDUs

Peripheral Device

Scenario Repetition

Reset
Command

Disconnection
Error

Unexpected PDU
or

Counter > X

TEST BENCH

23

Tool/Service Utilization

Raspberry Pi

Protocol Buffers

Ntfy

BLE Sniffer

Runs our fuzzing scenarios and WHAD
Connected to targeted stack with serial port

Standardized structures: Connection,
Disconnection, Reset command, Crash logs

An effective monitoring system that delivers real-
time notifications through a web app

Verify the packet exchanges for results
confirmation

CLI

24

Fig: CLI help display

https://github.com/quarkslab/ble-gatt-fuzzing

BLE Stack

Compatible
Hardware

BLE STACKS & HARDWARE

25

Zephyr RTOS
BLE Stack

MyNewt RTOS NimBLE
Stack

Bluedroid/
Fluoride stack
from Android

nRF52 ESP32, nRF52 Android, ESP32

GATT servers based on provided examples by each SDK.

26Fig: Test bench

TEST BENCH

Results

NC: UNEXPECTED READ BLOB RESPONSES

Bluedroid Read Blob Request process:

28

Database
Hash

Client
Supported
Features

Bluedroid v4.0 vs v5.1 Standardized Attributes

BLE

BUG: BYPASS THE WRITE PERMISSION CHECK

Bluedroid Prepare Write Request process:

29

/*BUG*/

Bluedroid Prepare Write Request process:

30

/*BUG*/

BUG: BYPASS THE WRITE PERMISSION CHECK

BUG: UNRESPONSIVE SERVER

Bluedroid Prepare Write Request weird behavior

 Client Characteristic Configuration descriptor or Client Supported Features characteristic

31

Server
doesn’t
respond
anymore

REQ_1

RSP_1

REQ_2

VULN: OUT-OF-BOUNDS WRITE

32

Bluedroid Gatt
server example

from ESPRESSIF

 ← Out-of-Bounds
Write

33

Check done
only if

prepare_buf
!= NULL

VULN: OUT-OF-BOUNDS WRITE

34

ESPRESSIF’s response: “ …the impact of this issue on customers is minor, lacking any
 substantial consequences.”

But...

7 code
examples were

impacted!

VULN: OUT-OF-BOUNDS WRITE

NimBLE timeout feature:

35

“A transaction not completed within 30 seconds shall time out. Such a
transaction shall be considered to have failed, and the local higher layers shall be informed
of this failure.” [Spec Vol.3 Part.F 3.3.3]

VULN: DENIAL OF SERVICE

36Fig: NimBLE Denial of Service

VULN: DENIAL OF SERVICE

37

VULN: DENIAL OF SERVICE

Fuzzing real-world devices

How to annoy your colleagues!

Fuzzing real-world devices

39

HOW TO ANNOY YOUR COLLEAGUES!

Which devices to target?

40

SONY
WH-1000XM4

SONY
WH-1000XM5

SONY
WF-1000XM4

HOW TO ANNOY YOUR COLLEAGUES!

41Fig: NimBLE Denial of Service

HOW TO ANNOY YOUR COLLEAGUES!

42Fig: Sony WH-1000XM4 GATT Server

HOW TO ANNOY YOUR COLLEAGUES!

43

Fig: Fast Pair Service

HOW TO ANNOY YOUR COLLEAGUES!

44
Fig: Sony WH-1000XM4

Denial of Service

HOW TO ANNOY YOUR COLLEAGUES!

Affected devices:

45

SONY
WH-1000XM4

SONY
WH-1000XM5

SONY
WF-1000XM4

HOW TO ANNOY YOUR COLLEAGUES!

https://github.com/quarkslab/ble-gatt-fuzzing/poc

Unfortunately...

46

HOW TO ANNOY YOUR COLLEAGUES!

Fixes:

47

HOW TO ANNOY YOUR COLLEAGUES!

- WH-1000XM4 version 2.6.0 (Released on October 17th)

- WF-1000XM4 version 2.1.0 (Released on October 17th)

- WH-1000XM5 version 2.3.1 (Released on October 2nd)

Limitations

LIMITATIONS

BLE version

▶ Based our attack scenarios on BLE version 4.2 and not on last one which is 6.0

GATT Servers

▶ Since a GATT server is populated by the stack and by the application, a poorly implemented GATT
server is less likely to trigger bugs

Results Analysis

▶ Didn’t have enough time to incorporate an automated analysis method

49

Conclusion

CONCLUSION

Observations

▶ Lack of standardization of BLE stack implementation leads to developer errors.
▶ Proximity between GATT and application layers may lead to more vulnerabilities.
▶ Over-the-air fuzzing is relevant even if not fast.

For more details

▶ Check out the blogpost and paper.
▶ https://blog.quarkslab.com/bluetooth-low-energy-gatt-fuzzing.html

51

Thank you!

Questions?

bboyer@quarkslab.com

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Slide4
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Slide5
	Diapo 53

