Hacking EV charging stations via the charging cable

Wilco van Beijnum & Sebastiaan Laro-Tol Hardwear.io NL 2024

Elaadnl

Us and ElaadNL

Wilco van Beijnum

- Researching cyber security of charging infrastructure at ElaadNL via Scyon

Sebastiaan Laro-Tol

- Test automation engineer at ElaadNL via Capgemini Engineering
- Testing Power Quality and Immunity of EV Infrastructure, with a background in red teaming

ElaadNL

– Knowledge and innovation center for smart and sustainable charging of EVs

Approach

- 1. Charging cable communication specification
- 2. Research hardware and software setup
- 3. Demo
- 4. Results and impact
- 5. What's next?

Communication – IEC 61851

- IEC 61851 (Mode 3/4) PWM over CP pin
- Voltage controlled by EV: state
- PWM duty cycle controlled by EVSE (charging station): max. current

Communication – IEC 61851

- IEC 61851 (Mode 3/4) PWM over CP pin
- Voltage controlled by EV: state
- PWM duty cycle controlled by EVSE (charging station): max. current
- 5% PWM

Elaadni

Communication - SLAC

- Signal Level Attenuation Characterisation (SLAC) initiates High Level Communication (HLC)
- Uses Power Line Communication (PLC)
- Signal strength measurement
- Used by DC CS (fast charger), and AC CS with HLC (PnC or V2G) support

Protocol	Direction	Info
HomePlug AV	EV -> Broadcast	CM_SLAC_PARM.REQ
HomePlug AV	EVSE -> EV	CM_SLAC_PARM.CNF
HomePlug AV	EV -> Broadcast	CM_SLAC_PARM.REQ
HomePlug AV	EV -> Broadcast	CM_START_ATTEN_CHAR.IND
HomePlug AV	EV -> Broadcast	CM_MNBC_SOUND.IND
HomePlug AV	EVSE -> EV	CM_ATTEN_CHAR.IND (Groups = 58, Avg. Attenuation = 32,66 dB)
HomePlug AV	EV -> EVSE	CM_ATTEN_CHAR.RSP
HomePlug AV	EV -> EVSE	CM_SLAC_MATCH.REQ
HomePlug AV	EVSE -> EV	CM_SLAC_MATCH.CNF
HomePlug AV	EV -> ?	CM_SET_KEY.REQ (Set Key Request)
HomePlug AV	? -> ?	CM_SET_KEY.CNF (Set Key Confirmation)
HomePlug AV	EV -> ?	Qualcomm Atheros, LINK_STATUS.REQ
HomePlug AV	? -> ?	Qualcomm Atheros, LINK_STATUS.CNF

Get EVSE IP address and port using SDP

Protocol	Direction	Info
V2GMSG (SDP) EV -> Broadcast	SDP request message, No transport layer security
V2GMSG (SDP) EVSE -> EV	SDP response message, No transport layer security

 V2G SECC Discovery Protocol Response SECC IP Address: fe80::201:87ff:fe08:1e79 SECC Port: 49152 Security: 0x10 (No transport layer security) Transport Protocol: 0x00 (TCP)

- EV sends supported protocols
- EVSE chooses protocol (DIN-SPEC-70121 / ISO-15118-2 / ISO-15118-20)
- Messages encoded using EXI

V2G Message

✓ Metadata

```
EXI: 8000EBAB9371D34B9B79D189A98989C1D191D191818999D26B9B3A232B30020000040001B75726E3A64696E3A37303132313A323031323A4D73674465660040000100880
     Message: supportedAppProtocolReq
     Decoded XML [truncated]: <?xml version="1.0" encoding="UTF-8"?><ns1:supportedAppProtocolReg xmlns:ns1="urn:iso:15118:2:2010:AppProtocol"><AppProtocolReg xmlns:ns1="urn:iso:15118:2:2010:AppProtocol"><AppProtocolReg xmlns:ns1="urn:iso:15118:2:2010:AppProtocol"><AppProtocolReg xmlns:ns1="urn:iso:15118:2:2010:AppProtocol"><AppProtocolReg xmlns:ns1="urn:iso:15118:2:2010:AppProtocol"><AppProtocolReg xmlns:ns1="urn:iso:15118:2:2010:AppProtocol"><
     Message Validation: Successful
     Schema: urn:iso:15118:2:2010:AppProtocol

    supportedAppProtocolReq

     [XML Attributes: xmlns:ns1="urn:iso:15118:2:2010:AppProtocol"]

    AppProtocol

        ProtocolNamespace: urn:iso:15118:2:2013:MsgDef
        VersionNumberMajor: 2
        VersionNumberMinor: 0
                                                                                                                         Direction
                                                                                           Protocol
                                                                                                                                                  Info
        SchemaID: 1
        Priority: 1
                                                                                                                         EV -> EVSE
                                                                                                                                                  supportedAppProtocolReq
                                                                                           V2GMSG (SAP)

    AppProtocol

                                                                                                                                                  supportedAppProtocolRes
                                                                                           V2GMSG (SAP)
                                                                                                                         EVSE -> EV
        ProtocolNamespace: urn:din:70121:2012:MsgDef
            . . . . . . .
```

Communication - 70121/15118

- Continuous communication during charging
- Payment, charging parameters, etc. exchanged

Protocol	Direction	Info
V2GMSG (ISO-2)	EV -> EVSE	SessionSetupReq
V2GMSG (ISO-2)	EVSE -> EV	SessionSetupRes
V2GMSG (ISO-2)	EV -> EVSE	ServiceDiscoveryReq
V2GMSG (ISO-2)	EVSE -> EV	ServiceDiscoveryRes
V2GMSG (ISO-2)	EV -> EVSE	PaymentServiceSelectionReq
V2GMSG (ISO-2)	EVSE -> EV	PaymentServiceSelectionRes
V2GMSG (ISO-2)	EV -> EVSE	AuthorizationReq
V2GMSG (ISO-2)	EVSE -> EV	AuthorizationRes
V2GMSG (ISO-2)	EV -> EVSE	ChargeParameterDiscoveryReq
V2GMSG (ISO-2)	EVSE -> EV	ChargeParameterDiscoveryRes
V2GMSG (ISO-2)	EV -> EVSE	PowerDeliveryReq
V2GMSG (ISO-2)	EVSE -> EV	PowerDeliveryRes
V2GMSG (ISO-2)	EV -> EVSE	ChargingStatusReq
V2GMSG (ISO-2)	EVSE -> EV	ChargingStatusRes
V2GMSG (ISO-2)	EV -> EVSE	PowerDeliveryReq
V2GMSG (ISO-2)	EVSE -> EV	PowerDeliveryRes
V2GMSG (ISO-2)	EV -> EVSE	SessionStopReq
V2GMSG (ISO-2)	EVSE -> EV	SessionStopRes

PLC modem

- Modem available in Linux as ethernet interface
- Service listening on all interfaces available via PLC

pi@evcc02:~ \$ ifconfig eth1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500 inet6 fe80::10dc:d0ff:fe45:fb72 prefixlen 64 scopeid 0x20<link> ether 12:dc:d0:45:fb:72 txqueuelen 100 (Ethernet) RX packets 0 bytes 0 (0.0 B) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 9 bytes 816 (816.0 B) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0 Demo

Results

Conclusion

Testing hardware

- Raspberry Pi with HAT in Pelican Case
- Uses I2SE PLC Stamp Mini 2 modem
- HAT connected to relevant pins of charging socket

Demo

Results

Conclusion

Elaadni

Testing software

- IEC 61851: self-developed script
- SLAC: self-developed script
- DIN-SPEC-70121 / ISO-15118: altered SwitchEV Josev¹

Methodology

Elaad

Access to many charging stations

Connect testbox to charging station

Testlab picture for reference, displayed chargers are not specifically part of research, or vulnerable

 EVSEMinimumCurrentLimit: 0h Multiplier: 0 Unit: h Value: 0
 EVSEMinimumVoltageLimit: 0h Multiplier: 0 Unit: h Value: 0
 EVSEPeakCurrentRipple: 0h Multiplier: 0 Unit: h Value: 0

Specification	Research setup	Demo	Results	Conclusion
Reca	p			Elaadni

- Capture IPv6 address, run Nmap scan
- Limit scan speed
- Forward using socat

```
pi@evcc02:~ $ nmap -Pn -n --scan-delay 10ms -p 8008 -r fe80::201:87ff:fe05:ef86%eth1 -6
Starting Nmap 7.94 ( https://nmap.org ) at 2024-10-15 14:59 CEST
Nmap scan report for fe80::201:87ff:fe05:ef86
Host is up (0.0056s latency).
PORT STATE SERVICE
8008/tcp open http
Nmap done: 1 IP address (1 host up) scanned in 0.12 seconds
pi@evcc02:~ $ socat -dd tcp4-listen:8008,reuseaddr,fork tcp6:[fe80::201:87ff:fe05:ef86%eth1]:8008
2024/10/15 14:59:44 socat[1166] W ioctl(5, IOCTL_VM_SOCKETS_GET_LOCAL_CID, ...): Inappropriate ioctl for device
2024/10/15 14:59:44 socat[1166] N listening on AF=2 0.0.0.0:8008
```


Results

- 18 DC + 1 AC charging stations, 13 manufacturers
- 10 charging stations (53%) exposed some service
 - Eight chargers with SSH exposed
 - One charger with MQTT exposed
 - Two chargers with HTTP exposed
 - Some other (proprietary) services exposed

Results – MQTT server

outlet/1/dc-metering {"actualCurrent":0.061523438,"actualVoltage":199.70001, "accumulatedEnergy":1272.699} outlet/1/dc-metering/meterdata {"publicKey":"","meterId":""} outlet/1/diagnostics/eea {"controlPilotPositiveVoltage":5.684,"controlPilotNegativeVoltage": -11.223,"controlPilotDutyCycle":4,"controlPilotFrequency":1000,"averageAttenuation":7.5689654} outlet/1/module {"state":"Operational","errors":[],"climateMeasurements":{"measurements": [{"name":"DCPositive","property":"Temperature","value":21.31},{"name":"DCNegative","property": "Temperature","value":21.1},{"name":"Cabinet","property":"Temperature","value":26.119999}]}, "ip":"192.168.1.2"}

- Unsuccessful in manipulating functioning

Results – HTTP servers

- Access gives control over CS configuration
- Brute-forceable default password
- Vulnerabilities in backup/restore functionality leads to RCE

Specification	Research setup	Demo	Results	Conclusion
Impa	act			Elaad

Elaadr

- Network services attacked from charging cable
 - Pivot into internal network
 - Impact on mobility
 - Power grid stability, blackouts
- Malicious cars

Conclusion

- Large ethernet attack surface
- Misconfiguration is common
- Increased attention to cyber security needed

What's next?

- Report findings
- Test charging station at ElaadNL, conduct external pentests
- Continued testing of charging stations, planned testing for EVs
- ElaadNL advices public tenders and legislators
 - Network and Information Systems directive (NIS2)
 - Radio Equipment Directive (RED)
 - Cyber Resilience Act (CRA)

Questions?

Wilco van Beijnum – wilco.van.beijnum@elaad.nl Sebastiaan Laro-Tol – sebastiaan.laro.tol@elaad.nl

Elaadn