
Maxime Rossi Bellom
Damiano Melotti

Dissecting the Modern
Android Data Encryption
Scheme

2

Who we are

● @DamianoMelotti
● Security researcher @ Quarkslab
● Interested in low-level mobile

security and fuzzing

● @max_r_b
● Security researcher

and R&D leader @ Quarkslab
● Working on mobile and embedded

software security

http://twitter.com/DamianoMelotti
http://twitter.com/max_r_b

3

The trigger

> Hey! My device fell into water and the main SoC is dead. However the Titan M1,2
chip seems to be alive and well, do you think you would be able to help me
recover my data on the phone?

[1]: 2021: A Titan M Odyssey (Maxime Rossi Bellom, Philippe Teuwen, Damiano Melotti)
[2]: Attack on Titan M, Reloaded: Vulnerability Research on a Modern Security Chip (Damiano Melotti, Maxime Rossi Bellom)

https://www.blackhat.com/eu-21/briefings/schedule/index.html#-a-titan-m-odyssey-24471
https://www.blackhat.com/us-22/briefings/schedule/index.html#attack-on-titan-m-reloaded-vulnerability-research-on-a-modern-security-chip-27330

4

The trigger

● Our answer: no, the main SoC is still essential for disk
encryption/decryption
○ … but up to what extent?

● Objective of this research: find out exactly
● Offensive approach:

○ What would a forensic analyst do?
○ Assuming infinite vulnerabilities, what can you do to get the secrets out?
○ Do you still need to bruteforce credentials?

5

● Idea: no sensitive plaintext files in storage
○ Attackers must not find files in clear on disk

● Threat model: full physical access to powered-off device
● Data is automatically encrypted when written and automatically

decrypted when read
● How?

○ Android: Full-Disk Encryption and File-Based Encryption (required from Android 10)
○ Underneath: dm-crypt for FDE, fscrypt for FBE

Data Encryption at Rest 101

6

● Relies on fscrypt, implemented in the Linux kernel
○ It supports Ext4, F2FS, and UBIFS

● Operates at the filesystem level
○ Allows files encrypted with different keys or unencrypted in a file system

● A master key is provided for directory tree
● Then derived per file keys (for regular file, directory, and symbolic link)
● Metadata are not encrypted by fscrypt

File-Based Encryption at Rest 101

7

● Each file has its own key
● Direct Boot and multi-user support
● Two encryption levels:

○ Credential Encrypted (CE), available only after authentication
○ Device Encrypted (DE), available also during boot

● In short, 2 “main” keys
○ DE key, for data decrypted at boot
○ CE key, available after authentication, protecting user data

● DE key is automatically decrypted using HW-backed keys

Android File-Based Encryption

8

Android File-Based Encryption

9

FBE key derivation

● We focus only on the CE key
● Complex derivation steps

○ Start from DE files owned by privileged users

● User credentials are used in the process
○ No matter how many bugs an attacker has, bruteforcing remains necessary!

10

ARM TrustZone

11

● Key storage and crypto services
● Keys are stored as key blobs
● Three protection levels:

○ Software only
○ TEE (default)
○ Hardware-backed (StrongBox)

● Raw key should never leave protected environment

Android Keystore system

12

Android Keystore system

13

14

15

Credentials, scrypt, secdis

16

Authentication with Gatekeeper

● The Gatekeeper TA verifies credentials from the TEE
● /data/system_de/<uid>/spblob/<handle>.pwd

○ scrypt parameters
○ password handle, i.e. HMAC(SHA512("user-gk-authentication" ||

scrypt(credentials, params))

● If successful, Gatekeeper returns an authentication token
○ Signed token to be used to prove successful authentication
○ Needed by Keymaster to use authentication-bound keys
○ Standard format, designed not to allow replay attacks3

● Gatekeeper implements throttling to prevent bruteforcing

[3]: https://android.googlesource.com/platform/hardware/libhardware/+/master/include/hardware/hw_auth_token.h

https://android.googlesource.com/platform/hardware/libhardware/+/master/include/hardware/hw_auth_token.h

17

Successful authentication

18

Failed authentication

19

20

21

Synthetic Password

● Problem: credentials shouldn’t be linked to the CE key
○ What if the user changes them?

● Solution: Synthetic Password
○ Key blob stored in /data/system_de/<uid>/spblob/<handle>.spblob
○ First, decrypted with an authentication-bound, TEE-protected key
○ Then, decrypted with the (hashed) applicationId

22

Attacking SP derivation

● Need to target the TEE
● Two alternatives

○ Keymaster TA (accessing the first AES key)
○ Gatekeeper TA (validating credentials and minting auth tokens)

23

● Our goal
○ Root the device and access all the device encrypted files
○ Patch the Gatekeeper trustlet to accept any credentials

● For that we need
○ Either multiple bugs (code exec, priv esc, etc)
○ Or one critical bug early in the boot process

Global strategy

24

● Samsung A225f and A226b
○ Cheap (~250€)
○ Mediatek SoC MT6769V and MT6833V
○ No security chip
○ Mix of Mediatek and Samsung code
○ Trustzone OS: TEEGRIS
○ Known critical Boot ROM vulnerability

PoC on Samsung Device

25

We use the project MTKClient4 (by Bjoern Kerler – @viperbjk)
● Exploit boot ROM bugs impacting plenty of Mediatek SoC

In short, we use it to
● Read/write all the partitions we need to patch
● Boot a patched preloader (BL2) image
● Bypass the secure boot checks done in boot ROM and preloader
● It just works :)

The Boot ROM Known Vulnerability

[4]: https://github.com/bkerler/mtkclient

https://twitter.com/viperbjk
https://github.com/bkerler/mtkclient

26

Boot Process

Boot Process

27

Boot Process

28

Boot Process

29

Boot Process

30

Boot Process

31

Boot Process

32

33

● Patching strategy: empirical
approach
○ Reverse engineering and

identify checks
○ Patch, test and repeat

● In the end we patch AVB to
launch a modified boot image

Little Kernel Patching

34

Little Kernel Patching

35

Little Kernel Patching

36

Main partitions used by Android: boot and super
● Boot contains the kernel and a ramdisk (only used for first boot stage)
● Super is a Dynamic Partition that contains 4 logical partitions

○ system, vendor, product, odm

To root it
● Magisk5 to patch the boot image
● We made few modifications to su
● Plus other little tricks to patch the super partition

Rooting Android

[5]: https://github.com/topjohnwu/Magisk

https://github.com/bkerler/mtkclient

37

● Trustzone OS designed by Samsung
● For Mediatek and Exynos SoCs
● ROM images:

○ tee1.img: ATF, TEEGRIS kernel, userboot.so
○ tzar.img: TEE root filesystem
○ super.img: Android system, Trusted Applications and Drivers

● Excellent references online6

TEEGRIS

[6]: https://www.riscure.com/tee-security-samsung-teegris-part-1/

https://www.riscure.com/tee-security-samsung-teegris-part-1/

38

TEEGRIS Images Verification

39

Patching TEEGRIS

40

● TAs come in a slightly modified ELF format
○ 8-bytes header and footer with signature
○ Removing them allows to load a nice ELF in your favourite disassembler

● GlobalPlatform API
○ Standard API for TEEs (memory allocation, crypto operations, etc.)
○ Makes reversing easier

● Trusty reference implementation7

○ Suggests what to expect from a TA

Reversing Gatekeeper

[7]: https://source.android.com/docs/security/features/trusty

https://source.android.com/docs/security/features/trusty

41

● 2 Gatekeeper commands: Enroll and Verify
● Verify does two things:

○ HMAC(pwd_handle) == expected?
○ If so, create new authentication token

● What if we can leak the key used by HMAC?

Gatekeeper Reference Implementation

1. pwd = generate new password
2. Value = HMAC(pwd_handle)
3. Value == expected

42

● 2 Gatekeeper commands: Enroll and Verify
● Verify does two things:

○ HMAC(pwd_handle) == expected?
○ If so, create new authentication token

Reversing & patching Gatekeeper

43

● This Gatekeeper implementation uses a KDF instead of a plain HMAC
○ KDF implemented in a library
○ which calls /dev/crypto
○ many steps to leak the key

● Simpler strategy: patch to accept any credentials
● Always return valid auth token to continue the process

1. KDF(pwd_handle) == expected?
2. If so, create new auth_token

Reversing & patching Gatekeeper

44

Reversing Gatekeeper

45

Attack strategy

● Read the output of the first AES decrypt
● Bruteforce credentials to generate applicationId
● Thanks to GCM mode, AES decrypt complains if the key is wrong

46

Hooking system_server

47

● Use Frida to hook system_server
● Retrieve intermediate buffer decrypted by TEE

○ Possible thanks to the auth token

Retrieving intermediate key with Frida

48

49

50

Bruteforce of the password

51

Bruteforce of the password

52

1. pwd = generate new password
2. token = scrypt(pwd, R, N, P, Salt)
3. Application_id = token || Prehashed value
4. Key = SHA512("application_id" || application_id)
5. AES_Decrypt(value_from_keymaster, key)

Bruteforce of the password

53

1. pwd = generate new password
2. token = scrypt(pwd, R, N, P, Salt)
3. Application_id = token || Prehashed value
4. Key = SHA512("application_id" || application_id)
5. AES_Decrypt(value_from_keymaster, key)

$ python3 bruteforce-tee.py
workers will cycle through the last 5 chars
Found it: 1234
the plaintext is '1234'
Done in 18.031058311462402s
Throughput: 1478.448992816657 tries/s

Bruteforce of the password

Demo 1

https://docs.google.com/file/d/17VtjrAHl9ZwU2ny6Do9dK3U9bqQZyCYX/preview

55

Architecture w/ Trusted Chip

56

● Security chip made by Google for Pixel phones
● From Pixel 3 to Pixel 5a

○ In this PoC we use a Pixel 3a
○ Titan M2 introduced from Pixel 6

● Based on Arm Cortex-M3
● Most of the code is divided into tasks

○ Keymaster (Strongbox), Weaver, AVB, etc

● Separate memory and resources
○ Communicates with Android on SPI bus

The Titan M Chip

57

● In TrustZone, secure and normal world run on the same CPU
○ Shared hardware (cache, RAM)
○ Side-channel attacks are possible (e.g. Rowhammer)

● Titan M relies on tamper-resistant hardware
● Separate firmware

○ Limited in size
○ Conceptually simple
○ Isolated from the rest of the system

Trusted chip vs TrustZone

58

Communication with the chip

59

Memory Layout

● Key/Value storage
○ Stored in slots
○ In two differents places in the flash

memory

● 4 commands: GetConfig, Read,
Write, Erase

● Implements throttling as well

60

Weaver

// Read

message ReadRequest {

 uint32 slot = 1;

 bytes key = 2;

}

message ReadResponse {

 Error error = 1;

 uint32 throttle_msec = 2;

 bytes value = 3;

}

61

62

63

CE key derivation with Weaver

64

● We consider the device being already rooted
● Weaver relies on the security chip Titan M
● Here we exploit CVE-2022-20233 to execute code on the chip
● Out-of-bounds write of 1 byte to 0x1

○ Can be repeated multiple times
○ Huge constraints on the offset
○ We managed to overwrite a global field and cause another corruption

● Full exploit write-up in our blog8

PoC on Google Pixel

[8]: https://blog.quarkslab.com/attacking-titan-m-with-only-one-byte.html

https://source.android.com/docs/security/features/trusty

65

● We built a client to communicate with Titan M, nosclient
● “Leak” feature:

○ ./nosclient leak <address> <size>
○ Read <size> bytes from <address>
→ Arbitrary read in Titan M’s memory

● Weaver slots and values are stored in flash
○ Reverse engineering to understand a memory range
○ Then search for 16 bytes digests
○ Weaver Write and Read help out

Nosclient and the leak command

66

Our Strategy

1. Leak the Weaver key
2. Use it to compare our generated credentials

$ python3 bruteforce.py
workers will cycle through the last 5 chars
Found it: 1106
the plaintext is'1106'
Done in 15.063793659210205 s
Throughput: 1491.722504195411 tries/s

Bruteforce of the password

1. pwd = generate new password
2. token = scrypt(pwd, R, N, P, Salt)
3. key = SHA512("weaver_key" || token)
4. Compare with leaked Weaver key

67

Demo 2

https://docs.google.com/file/d/1uOs9DGXk6zD6CIwHDwXqvuPqoSXWTA3D/preview

● FBE is very well designed
● Ingredients from “everywhere” are used to derive the key

○ Files owned by privileged users
○ TEE-protected keys
○ Weaver values (when available)

● Multiple bugs needed to break it
○ Or a very powerful one

● You still need to bruteforce credentials in the end
● “my very secret password example for Hardwear.io 2023”

will be hard to guess :)

69

Conclusion

contact@quarkslab.com
@DamianoMelotti
@max_r_b

Thank you!

https://twitter.com/@DamianoMelotti
https://twitter.com/@max_r_b

71

LK: Android bootloader based on Little Kernel
● Allows to boot Android or other modes (Recovery)
● Loads TZAR image in TEEGRIS
● Implements Android Verified Boot v2

○ Verification of Android images
○ Involving boot and vbmeta images
○ Anti-rollback

Little Kernel

72

TrustZone ARchive: contains a root filesystem

● Shared libraries

● Binaries

● tzinitd (init binary)

● root_task

TZAR image

├── bin
│ ├── 00000005-0005-0005-0505-050505050505
│ └── 00000007-0007-0007-0707-070707070707
├── etc
│ ├── propd
│ │ └── build_sl.prop
│ └── tzinitd
│ ├── crypto.tzrc
│ ├── init.release.tzrc
│ ├── init.tzrc
│ ├── ...
├── lib32
│ ├── libaudit_aux.so
│ ├── libc++.so
│ ├── ...
├── lib64
│ ├── libaudit_aux.so
│ ├── libc++.so
│ ├── ...
├── sbin
│ ├── propd
│ └── root_task
└── tzinitd

73

Our final goal is to run a modified Gatekeeper TA
● Patch userboot.so from the tee1 partition

○ Disable verification of TZAR image
● Patch root_task from the TZAR image

○ Disable verification of TA
● Patch the Gatekeeper TA

○ Accept any credentials and return a valid auth token

Patching TEEGRIS

