
OPTIMIZATION AND AMPLIFICATION
OF CACHE SIDE CHANNEL SIGNALS
DAVID KAPLAN, SECURITY ARCHITECT

JUNE 2022

| HARDWEAR.IO TALK | 2022

[Public]

2

NOTICE

• The work described in this presentation is my own

• Independently, very similar work was developed by:

• Daniel Katzman*, William Kosasih^, Chitchanok Chuengsatiansup^, Eyal Ronen*, and Yuval Yarom^

• Their work is entitled “The Gates of Time” (under submission)

• I am working with this group to merge our findings into a joint paper

* Tel-Aviv University

^ The University of Adelaide

| HARDWEAR.IO TALK | 2022

[Public]

3

SIDE CHANNEL BASICS

• Prepare the cache
state as required

• Puts certain
cachelines into known
states

Setup

• Execute the victim

• Victim perturbs the
state of the cache in
some way

Execution
• Examine the new

state of the cache

• Infer information
about the victim
based on the cache
state

Recovery

Focus of this work

| HARDWEAR.IO TALK | 2022

[Public]

4

READING A “SIGNAL”

• A “signal” refers to the state of a particular cacheline

• Reading a “signal” is typically done using a high precision timer

• Typical timer: CPU Time Stamp Counter (TSC)

• Present cacheline: ~50 cycles

• Not-Present cacheline: ~280 cycles

• Difference is measured in nanoseconds

• Meaning of the signal varies based on the attack

• FLUSH+RELOAD: Looks for a line to be present

• PRIME+PROBE: Looks for a line to not be present

t1 = rdtscp();
x = *p
t2 = rdtscp();
time = t2-t1;

CPU
Cache

DRAM

Is *p present?

Yes, here it is No, must read

DRAM

| HARDWEAR.IO TALK | 2022

[Public]

5

QUESTIONS

Answer: NO

• Do I need to time N accesses to check the state of N cachelines?

• Do I need at least a reasonably high precision (<1ms) timer to read a signal?

• Do I need a high precision timer to read a signal?

| HARDWEAR.IO TALK | 2022

[Public]

6

BASIC PRIMITIVE

• Let’s start with 2 cachelines, A and B

• State of A is initially unknown

• B is initially not present

• Value of memory at A is 0

• Further, let’s assume the branch is mis-predicted (incorrectly taken)

• How long it takes the CPU to realize the misprediction depends on the state of A

• If A was initially present, it takes a short amount of time to realize the misprediction => B is not fetched

• If A was initially not-present, it takes a long amount of time => B is fetched

• Notice that the state of B is therefore the inverse of the state of A after execution

if (*A !=0)
Access line B

| HARDWEAR.IO TALK | 2022

[Public]

7

IMPLEMENTING THE INVERTER

How do we force the CPU to mis-predict?

1: call 3f
2: #Speculative instructions go here

lfence
3: mov $4f, (%rsp)

ret
4: nop

The CPU usually predicts that RET instructions return to the instruction after a CALL

But in this code, it overwrites the return address on the stack with label 4

Architectural flow: 1->3->4

Speculative flow: 1->3->2

| HARDWEAR.IO TALK | 2022

[Public]

8

IMPLEMENTING THE INVERTER

1: call 3f

2: xor %rax, %rax

.rept 5 # Delay ops

mov (%rsp, %rax), %rax

and $0, %rax

.endr

mov (%rdi, %rax), %r11

lfence

3: mov $4f, (%rsp)

mov (%rsi), %r11

add %r11, (%rsp)

ret

4: nop

RSI = cacheline A

RDI = cacheline B

Call to label 3

Overwrite return address

| HARDWEAR.IO TALK | 2022

[Public]

9

IMPLEMENTING THE INVERTER

1: call 3f

2: xor %rax, %rax

.rept 5 # Delay ops

mov (%rsp, %rax), %rax

and $0, %rax

.endr

mov (%rdi, %rax), %r11

lfence

3: mov $4f, (%rsp)

mov (%rsi), %r11

add %r11, (%rsp)

ret

4: nop

RSI = cacheline A

RDI = cacheline B

Read cacheline A

Add the result (0) to the

return address on the top

of the stack

| HARDWEAR.IO TALK | 2022

[Public]

10

IMPLEMENTING THE INVERTER

1: call 3f

2: xor %rax, %rax

.rept 5 # Delay ops

mov (%rsp, %rax), %rax

and $0, %rax

.endr

mov (%rdi, %rax), %r11

lfence

3: mov $4f, (%rsp)

mov (%rsi), %r11

add %r11, (%rsp)

ret

4: nop

RSI = cacheline A

RDI = cacheline B

Mis-speculate to here

| HARDWEAR.IO TALK | 2022

[Public]

11

IMPLEMENTING THE INVERTER

1: call 3f

2: xor %rax, %rax

.rept 5 # Delay ops

mov (%rsp, %rax), %rax

and $0, %rax

.endr

mov (%rdi, %rax), %r11

lfence

3: mov $4f, (%rsp)

mov (%rsi), %r11

add %r11, (%rsp)

ret

4: nop

RSI = cacheline A

RDI = cacheline B

Execute delay ops

This gives the CPU time

to resolve the RET if A

was present

| HARDWEAR.IO TALK | 2022

[Public]

12

IMPLEMENTING THE INVERTER

1: call 3f

2: xor %rax, %rax

.rept 5 # Delay ops

mov (%rsp, %rax), %rax

and $0, %rax

.endr

mov (%rdi, %rax), %r11

lfence

3: mov $4f, (%rsp)

mov (%rsi), %r11

add %r11, (%rsp)

ret

4: nop

RSI = cacheline A

RDI = cacheline B

If A was not present,

we’ll reach here and

access cacheline B

| HARDWEAR.IO TALK | 2022

[Public]

13

INVERTER EXPLAINED

A is present

The read of %RSI

executes quickly

A is NOT present

The read of %RSI

executes slowly

Read of B is

squashed

Fetch

Fetch

Fetch

Fetch

Execute

Execute

Execute

Execute

Fetch Execute

mov (%rsi), %r11

add %r11, (%rsp)

ret

delay ops

mov (%rdi), %r11

4: nop

Fetch

Fetch

Fetch

Fetch

Fetch

Execute

Execute

Execute

Fetch Execute

mov (%rsi), %r11

add %r11, (%rsp)

ret

delay ops

mov (%rdi), %r11

4: nop

Execute

Fetch Execute

| HARDWEAR.IO TALK | 2022

[Public]

14

HOW ABOUT THIS CODE

1: call 3f

2: <delay ops>

mov (%rdi, %rax), %r11

lfence

3: mov $4f, (%rsp)

mov (%rsi), %r11

add (%rdx), %r11

add %r11, (%rsp)

ret

4: nop

This code reads 2 cachelines (RSI and RDX)

Notice there is a dependency: The add

instructions cannot execute until R11 is

computed

Therefore:

(%RSI) (%RDX) Output (%RDI)

| HARDWEAR.IO TALK | 2022

[Public]

15

HOW ABOUT THIS CODE

1: call 3f

2: <delay ops>

mov (%rdi, %rax), %r11

lfence

3: mov $4f, (%rsp)

mov (%rsi), %r11

add (%rdx), %r11

add %r11, (%rsp)

ret

4: nop

This code reads 2 cachelines (RSI and RDX)

Notice there is a dependency: The add

instructions cannot execute until R11 is

computed

Therefore:

(%RSI) (%RDX) Output (%RDI)

Not present Not present Present

| HARDWEAR.IO TALK | 2022

[Public]

16

HOW ABOUT THIS CODE

1: call 3f

2: <delay ops>

mov (%rdi, %rax), %r11

lfence

3: mov $4f, (%rsp)

mov (%rsi), %r11

add (%rdx), %r11

add %r11, (%rsp)

ret

4: nop

This code reads 2 cachelines (RSI and RDX)

Notice there is a dependency: The add

instructions cannot execute until R11 is

computed

Therefore:

(%RSI) (%RDX) Output (%RDI)

Not present Not present Present

Not present Present Present

| HARDWEAR.IO TALK | 2022

[Public]

17

HOW ABOUT THIS CODE

1: call 3f

2: <delay ops>

mov (%rdi, %rax), %r11

lfence

3: mov $4f, (%rsp)

mov (%rsi), %r11

add (%rdx), %r11

add %r11, (%rsp)

ret

4: nop

This code reads 2 cachelines (RSI and RDX)

Notice there is a dependency: The add

instructions cannot execute until R11 is

computed

Therefore:

(%RSI) (%RDX) Output (%RDI)

Not present Not present Present

Not present Present Present

Present Not present Present

| HARDWEAR.IO TALK | 2022

[Public]

18

HOW ABOUT THIS CODE

1: call 3f

2: <delay ops>

mov (%rdi, %rax), %r11

lfence

3: mov $4f, (%rsp)

mov (%rsi), %r11

add (%rdx), %r11

add %r11, (%rsp)

ret

4: nop

This code reads 2 cachelines (RSI and RDX)

Notice there is a dependency: The add

instructions cannot execute until R11 is

computed

Therefore:

(%RSI) (%RDX) Output (%RDI)

Not present Not present Present

Not present Present Present

Present Not present Present

Present Present Not Present

NAND!

| HARDWEAR.IO TALK | 2022

[Public]

19

MORE GADGETS

• Replicator

• Sets the state of N cachelines equal to the opposite of the input

• Basically an inverter with multiple output lines

• NOR Gadget

• Exercise for the reader ☺

• Multi-input gadgets

• Simple 2-input NAND (and NOR) gadgets can be trivially expanded to take multiple inputs

• There is practical limit on fan-in and fan-out based on CPU capabilities

• Note that we always assume cachelines have the value 0

• The memory is attacker-controlled, and therefore can have attacker-controlled values (0 being easiest)

• The attacker is only interested in the presence of the cacheline, not its value

| HARDWEAR.IO TALK | 2022

[Public]

20

SIGNAL AMPLIFICATION

| HARDWEAR.IO TALK | 2022

[Public]

21

• Given a single cacheline A in an unknown state, how can we conduct a measurement to
determine the state of the line with a low precision timer?

• Our plan is to execute some code and then conduct a timing measurement

• If A was initially present, the time measured will be T1

• If A was initially not present, the time measured will be T2

• We want to make |T2-T1| be as large as possible

• Signal strength = |T2-T1|

• For a single cacheline, for example:

• T1 = 50, T2 = 280

• Signal strength = 230 cycles

AMPLIFIER GOALS

t1 = rdtscp();
x = *p
t2 = rdtscp();
time = t2-t1;

| HARDWEAR.IO TALK | 2022

[Public]

22

• The single-stage amplifier consists of
two parts:

• 1:N replicator

• This uses the replicator gadget to
access many cachelines if the input
cacheline is not present

• The replicator will attempt to fetch all
N lines in parallel

• N will vary by CPU architecture. On
AMD Zen3, N=23 worked well

• Timing measurement

• This code will access all N lines in
series and time how long this takes

• Use a data dependency to force the
processor to access all N lines, one at
a time

SINGLE-STAGE AMPLIFIER
A (state unknown)

B

C

D

B

C

D

B, C, and D

are all

present

Time: 150

cycles

B, C, and D

are all NOT

present

Time: 840

cycles

Signal strength = 840-150 = 690

| HARDWEAR.IO TALK | 2022

[Public]

23

• The single stage amplifier is limited by the 1:N replicator gadget

• Achieves amplification of ~N times

• Can we just chain these together?

• First stage: Set the state of N cachelines based on the initial cacheline

• Second stage: Set the state of N*N cachelines based on the N cachelines from the first stage

• Third stage: Set the state of N*N*N cachelines based on the N*N cachelines from the second stage

• Etc.

• In theory, this could enable much higher amplification. But it runs into practical problems:

• The size of the cache is limited…entire cache is consumed after 5th stage

• Other system interference creates additional noise

BEYOND SINGLE-STAGE

| HARDWEAR.IO TALK | 2022

[Public]

24

• The Self-Reinforcing Amplifier is even better

• Idea:

• Use the single-stage amplifier but save one cacheline behind

• E.g. replicate input to 23 cachelines, but only time access to 22

• Use the saved cacheline to restore the state of the input line

• Rinse and repeat

• In diagram, Φ(X) means X is present in the cache

• Key point:

• The 1:N replicator accesses all N lines in parallel

• The access of lines 2…N is then done in series

CAN WE DO BETTER?

Amplify Signal S.

Set ɸ(A1...n) = ¬ɸ(S)

Start

Access cachelines

A2...An

Restore Signal S.

Set ɸ(S) = ¬ɸ(A1)

Stop

| HARDWEAR.IO TALK | 2022

[Public]

25

RESULTS

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80 90 100 110

Si
gn

al
 S

tr
en

gt
h

 (
m

s)

Iterations (10k)

Signal strength increases

consistently but only up to a

point

With each iteration, there is a

risk of signal corruption

700k looks like a good choice

| HARDWEAR.IO TALK | 2022

[Public]

26

• Chart shows results from 1000
runs

• Average signal strength was
~600ms

• Can recover the state of the
initial line with ~50% chance
with a 500ms timer

• And 40% of indeterminate signal

• With a 100ms timer, correct
signal retrieved 66% of the time

• Note: Negative signal strengths
indicate incorrect recovery

700K AMPLIFIER

-1500

-1000

-500

0

500

1000

1500

Si
gn

al
 S

tr
en

gt
h

 (
m

s)

| HARDWEAR.IO TALK | 2022

[Public]

27

• 100k is a better choice if a slightly
better time is available

• Average signal strength: 182ms

• 82% chance of correct recovery
with a 100ms timer

• And only 1% chance of incorrect
recovery

• 95% chance of correct recovery
with a 10ms timer

• 182ms is >2M amplification
compared to baseline

100K AMPLIFIER

-150

-100

-50

0

50

100

150

200

Si
gn

al
 S

tr
en

gt
h

 (
m

s)

| HARDWEAR.IO TALK | 2022

[Public]

28

MORE FUN WITH
CACHELINES

| HARDWEAR.IO TALK | 2022

[Public]

29

• Given N cachelines of which exactly 1 is present, determine which cacheline is present
using the fewest timing measurements as possible

• Useful for side channel attacks where an array is indexed with a secret

• E.g. FLUSH+RELOAD attack where victim executes x = array[secret]

• Goal is to determine which array[] line was brought in

• Binary search seems like a good choice, but how can we do it without losing state?

• Every time a gadget is used, it will bring in the source cacheline

• We must find a way to preserve the initial state of the entire array before doing our search

BINARY SEARCH

| HARDWEAR.IO TALK | 2022

[Public]

30

• 1. 1:2 Replicator
• For each line in signal array, set two lines in

the working array to be the inverse

• 2. NAND Gadget
• Perform a multi-input NAND of lines

corresponding to half the signal array

• E.g. 4-input NAND from an 8-wide initial array

• 3. Inverter
• For each untouched line in the working array,

restore the original signal array

• If NAND result is 1, the present line is in
that half

• Only timing measurement is needed on
NAND result

BINARY SEARCH

NAND

Step 1

Signal Array

(1 line present)

Working Array

(2 lines NOT present)

Logic Result

Step 2

Step 3

| HARDWEAR.IO TALK | 2022

[Public]

31

• Different sizes were tested, with the present cacheline
being selected randomly

• Number of timing measurements=Log2(Size)

• Note: Goal of binary search is to minimize number of
timing measurements, *not* to maximize speed

• Binary search ~15-20x slower than simple method of
testing each cacheline individually

BINARY SEARCH RESULTS

Size Accuracy (100k runs)

4 100%

8 100%

16 100%

32 100%

64 99.99%

128 92.37%

256 66.40%

| HARDWEAR.IO TALK | 2022

[Public]

32

• Given N cacheline in unknown state, count the number of present cacheline using as few
timing measurements as possible

• May be useful if the attacker is trying to infer which code path a victim took

• E.g. in one code path, the victim touches 5 lines, while in another, it touches 7

• Useful in PRIME+PROBE to count number of evicted lines

• We need a counter…but not exactly a traditional one

CACHELINE COUNTER

| HARDWEAR.IO TALK | 2022

[Public]

33

• The state of our counter will be stored in the
presence of a set of cachelines

• Example: 32 entry array of potentially present
cachelines

• Attacker allocates 6 new cachelines, where each
corresponds to a bit of an adder

• E.g. if the counter is 6’b001101 then

• Cache_Counter[0], [2], and [3] are present

• Cache_Counter[1], [4], and [5] are not present

• Initially, all cachelines corresponding to the counter
are not present (counter=0)

• We then “add” each input cacheline into our
counter

CACHELINE COUNTER

NAND

NOT (3 outputs)

NOT (3 outputs)

NOT

NOT

NOT

NOT

NAND

NAND

NAND NOT

Carry

Sum
A

B

| HARDWEAR.IO TALK | 2022

[Public]

34

COUNTER EXAMPLE (SIZE 4)

Counter[0] Counter[1] Counter[2]Input[0] Input[1] Input[2] Input[3]

Counter[0] Counter[1] Counter[2]Input[0] Input[1] Input[2] Input[3]

Counter[0] Counter[1] Counter[2]Input[0] Input[1] Input[2] Input[3]

Counter[0] Counter[1] Counter[2]Input[0] Input[1] Input[2] Input[3]

Counter[0] Counter[1] Counter[2]Input[0] Input[1] Input[2] Input[3]

Initial State

Process

Input[0]

Process

Input[1]

Process

Input[2]

Process

Input[3]

Present

Not Present

| HARDWEAR.IO TALK | 2022

[Public]

35

• Different sizes were tested, with randomized initial
configurations

• Number of timing measurements needed=Log2(Size+1)

• Only need to read the state of the cachelines
corresponding to the counter at the end

• High accuracy across all tested sizes

• Doesn’t have large fan-in/fan-out gadgets

COUNTER RESULTS

Size Accuracy (100k runs)

4 99.99%

8 99.98%

16 99.94%

32 99.84%

64 99.70%

128 98.28%

256 97.98%

| HARDWEAR.IO TALK | 2022

[Public]

36

CONCLUSION

| HARDWEAR.IO TALK | 2022

[Public]

37

• As shown, signal amplification works and can result in signal strengths easily measurable by
extremely coarse timers

• All results shown were based on a single cacheline from a single run. If the victim can be invoked
multiple times, accuracy will skyrocket

Disabling high precision timers is a weak mitigation for side channel attacks

• First off, signal amplification can make it such that such timers are not needed often

• And using logic gadgets to manipulate cache signals before reading can greatly reduce the number
of measurements needed

Monitoring access to timers is also a weak mitigation

• Performing logical operations like binary searches could improve performance if every
measurement requires significant amplification

Signals can be computed on before measurement

KEY TAKEAWAYS

| HARDWEAR.IO TALK | 2022

[Public]

38

• This work is (to my knowledge) one of the first to focus on the signal recovery aspect of side
channel attacks

• But if the attack is not able to get to the signal recovery stage, no extra mitigations are needed

• Mitigations are most effective at preventing the attack in the first place

• Fences to prevent unwanted speculation

• Non-secret dependent memory accesses

• Etc.

• Even though timer restrictions are clearly ineffective, they can still be a defense-in-depth
measure

MITIGATIONS
• Prepare the cache

state as required

• Puts certain
cachelines into known
states

Setup

• Execute the victim

• Victim perturbs the
state of the cache in
some way

Execution
• Examine the new state

of the cache

• Infer information about
the victim based on
the cache state

Recovery

| HARDWEAR.IO TALK | 2022

[Public]

39

• There are likely more types of gadgets and interesting use cases

• Can errors be minimized and/or corrected when doing these operations?

• Can amplifiers be improved beyond what was shown?

• Does storing state in the presence of cachelines become a computing paradigm?
• State stored in the presence of cachelines cannot be viewed without perturbing it
• Could this be a way to detect side channel attacks?

• Keep an eye out for the paper by Katzman, et al.

FUTURE WORK

Questions?

| HARDWEAR.IO TALK | 2022

[Public]

DISCLAIMER & ATTRIBUTION

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new model
and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this
information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY
APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT,
INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

ATTRIBUTION

© 2022 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are
for informational purposes only and may be trademarks of their respective owners.

