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NOTICE

• The work described in this presentation is my own

• Independently, very similar work was developed by:

• Daniel Katzman*, William Kosasih^, Chitchanok Chuengsatiansup^, Eyal Ronen*, and Yuval Yarom^

• Their work is entitled “The Gates of Time” (under submission)

• I am working with this group to merge our findings into a joint paper

* Tel-Aviv University

^ The University of Adelaide
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SIDE CHANNEL BASICS

• Prepare the cache 
state as required

• Puts certain 
cachelines into known 
states

Setup

• Execute the victim

• Victim perturbs the 
state of the cache in 
some way

Execution
• Examine the new 

state of the cache

• Infer information 
about the victim 
based on the cache 
state

Recovery

Focus of this work
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READING A “SIGNAL”

• A “signal” refers to the state of a particular cacheline

• Reading a “signal” is typically done using a high precision timer

• Typical timer: CPU Time Stamp Counter (TSC)

• Present cacheline: ~50 cycles

• Not-Present cacheline: ~280 cycles

• Difference is measured in nanoseconds

• Meaning of the signal varies based on the attack

• FLUSH+RELOAD: Looks for a line to be present

• PRIME+PROBE: Looks for a line to not be present

t1 = rdtscp();
x = *p
t2 = rdtscp();
time = t2-t1;

CPU
Cache

DRAM

Is *p present?

Yes, here it is No, must read 

DRAM
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QUESTIONS

Answer: NO

• Do I need to time N accesses to check the state of N cachelines?

• Do I need at least a reasonably high precision (<1ms) timer to read a signal?

• Do I need a high precision timer to read a signal?
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BASIC PRIMITIVE

• Let’s start with 2 cachelines, A and B

• State of A is initially unknown

• B is initially not present

• Value of memory at A is 0

• Further, let’s assume the branch is mis-predicted (incorrectly taken)

• How long it takes the CPU to realize the misprediction depends on the state of A

• If A was initially present, it takes a short amount of time to realize the misprediction => B is not fetched

• If A was initially not-present, it takes a long amount of time => B is fetched

• Notice that the state of B is therefore the inverse of the state of A after execution

if (*A !=0)
Access line B  
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IMPLEMENTING THE INVERTER

How do we force the CPU to mis-predict?

1: call 3f
2: #Speculative instructions go here

lfence
3: mov $4f, (%rsp)

ret
4: nop

The CPU usually predicts that RET instructions return to the instruction after a CALL

But in this code, it overwrites the return address on the stack with label 4

Architectural flow: 1->3->4

Speculative flow: 1->3->2
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IMPLEMENTING THE INVERTER

1: call 3f    

2: xor %rax, %rax          

.rept 5 # Delay ops

mov (%rsp, %rax), %rax        

and $0, %rax       

.endr

mov (%rdi, %rax), %r11        

lfence

3: mov $4f, (%rsp)  

mov (%rsi), %r11 

add %r11, (%rsp)     

ret

4: nop

RSI = cacheline A

RDI = cacheline B

Call to label 3

Overwrite return address
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IMPLEMENTING THE INVERTER

1: call 3f    

2: xor %rax, %rax          

.rept 5 # Delay ops

mov (%rsp, %rax), %rax        

and $0, %rax       

.endr

mov (%rdi, %rax), %r11        

lfence

3: mov $4f, (%rsp)  

mov (%rsi), %r11 

add %r11, (%rsp)     

ret

4: nop

RSI = cacheline A

RDI = cacheline B

Read cacheline A

Add the result (0) to the 

return address on the top 

of the stack
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IMPLEMENTING THE INVERTER

1: call 3f    

2: xor %rax, %rax          

.rept 5 # Delay ops

mov (%rsp, %rax), %rax        

and $0, %rax       

.endr

mov (%rdi, %rax), %r11        

lfence

3: mov $4f, (%rsp)  

mov (%rsi), %r11 

add %r11, (%rsp)     

ret

4: nop

RSI = cacheline A

RDI = cacheline B

Mis-speculate to here
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IMPLEMENTING THE INVERTER

1: call 3f    

2: xor %rax, %rax          

.rept 5 # Delay ops

mov (%rsp, %rax), %rax        

and $0, %rax       

.endr

mov (%rdi, %rax), %r11        

lfence

3: mov $4f, (%rsp)  

mov (%rsi), %r11 

add %r11, (%rsp)     

ret

4: nop

RSI = cacheline A

RDI = cacheline B

Execute delay ops

This gives the CPU time 

to resolve the RET if A 

was present
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IMPLEMENTING THE INVERTER

1: call 3f    

2: xor %rax, %rax          

.rept 5 # Delay ops

mov (%rsp, %rax), %rax        

and $0, %rax       

.endr

mov (%rdi, %rax), %r11        

lfence

3: mov $4f, (%rsp)  

mov (%rsi), %r11 

add %r11, (%rsp)     

ret

4: nop

RSI = cacheline A

RDI = cacheline B

If A was not present, 

we’ll reach here and 

access cacheline B
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INVERTER EXPLAINED

A is present

The read of %RSI 

executes quickly

A is NOT present

The read of %RSI 

executes slowly

Read of B is 

squashed

Fetch

Fetch

Fetch

Fetch

Execute

Execute

Execute

Execute

Fetch Execute

mov (%rsi), %r11

add %r11, (%rsp)

ret

delay ops

mov (%rdi), %r11

4: nop

Fetch

Fetch

Fetch

Fetch

Fetch

Execute

Execute

Execute

Fetch Execute

mov (%rsi), %r11

add %r11, (%rsp)

ret

delay ops

mov (%rdi), %r11

4: nop

Execute

Fetch Execute
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HOW ABOUT THIS CODE

1: call 3f    

2: <delay ops>

mov (%rdi, %rax), %r11        

lfence

3: mov $4f, (%rsp)  

mov (%rsi), %r11

add (%rdx), %r11 

add %r11, (%rsp)     

ret

4: nop

This code reads 2 cachelines (RSI and RDX)

Notice there is a dependency: The add

instructions cannot execute until R11 is 

computed

Therefore:

(%RSI) (%RDX) Output (%RDI)
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HOW ABOUT THIS CODE

1: call 3f    

2: <delay ops>

mov (%rdi, %rax), %r11        

lfence

3: mov $4f, (%rsp)  

mov (%rsi), %r11

add (%rdx), %r11 

add %r11, (%rsp)     

ret

4: nop

This code reads 2 cachelines (RSI and RDX)

Notice there is a dependency: The add

instructions cannot execute until R11 is 

computed

Therefore:

(%RSI) (%RDX) Output (%RDI)

Not present Not present Present
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HOW ABOUT THIS CODE

1: call 3f    

2: <delay ops>

mov (%rdi, %rax), %r11        

lfence

3: mov $4f, (%rsp)  

mov (%rsi), %r11

add (%rdx), %r11 

add %r11, (%rsp)     

ret

4: nop

This code reads 2 cachelines (RSI and RDX)

Notice there is a dependency: The add

instructions cannot execute until R11 is 

computed

Therefore:

(%RSI) (%RDX) Output (%RDI)

Not present Not present Present

Not present Present Present
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HOW ABOUT THIS CODE

1: call 3f    

2: <delay ops>

mov (%rdi, %rax), %r11        

lfence

3: mov $4f, (%rsp)  

mov (%rsi), %r11

add (%rdx), %r11 

add %r11, (%rsp)     

ret

4: nop

This code reads 2 cachelines (RSI and RDX)

Notice there is a dependency: The add

instructions cannot execute until R11 is 

computed

Therefore:

(%RSI) (%RDX) Output (%RDI)

Not present Not present Present

Not present Present Present

Present Not present Present
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HOW ABOUT THIS CODE

1: call 3f    

2: <delay ops>

mov (%rdi, %rax), %r11        

lfence

3: mov $4f, (%rsp)  

mov (%rsi), %r11

add (%rdx), %r11 

add %r11, (%rsp)     

ret

4: nop

This code reads 2 cachelines (RSI and RDX)

Notice there is a dependency: The add

instructions cannot execute until R11 is 

computed

Therefore:

(%RSI) (%RDX) Output (%RDI)

Not present Not present Present

Not present Present Present

Present Not present Present

Present Present Not Present

NAND!
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MORE GADGETS

• Replicator

• Sets the state of N cachelines equal to the opposite of the input

• Basically an inverter with multiple output lines

• NOR Gadget

• Exercise for the reader ☺

• Multi-input gadgets

• Simple 2-input NAND (and NOR) gadgets can be trivially expanded to take multiple inputs

• There is practical limit on fan-in and fan-out based on CPU capabilities

• Note that we always assume cachelines have the value 0

• The memory is attacker-controlled, and therefore can have attacker-controlled values (0 being easiest)

• The attacker is only interested in the presence of the cacheline, not its value
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SIGNAL AMPLIFICATION
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• Given a single cacheline A in an unknown state, how can we conduct a measurement to 
determine the state of the line with a low precision timer?

• Our plan is to execute some code and then conduct a timing measurement

• If A was initially present, the time measured will be T1

• If A was initially not present, the time measured will be T2

• We want to make |T2-T1| be as large as possible

• Signal strength = |T2-T1|

• For a single cacheline, for example:

• T1 = 50, T2 = 280

• Signal strength = 230 cycles

AMPLIFIER GOALS

t1 = rdtscp();
x = *p
t2 = rdtscp();
time = t2-t1;
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• The single-stage amplifier consists of 
two parts:

• 1:N replicator

• This uses the replicator gadget to 
access many cachelines if the input 
cacheline is not present

• The replicator will attempt to fetch all 
N lines in parallel

• N will vary by CPU architecture.  On 
AMD Zen3, N=23 worked well

• Timing measurement

• This code will access all N lines in 
series and time how long this takes

• Use a data dependency to force the 
processor to access all N lines, one at 
a time

SINGLE-STAGE AMPLIFIER
A (state unknown)

B

C

D

B

C

D

B, C, and D 

are all 

present

Time: 150 

cycles

B, C, and D 

are all NOT

present

Time: 840 

cycles

Signal strength = 840-150 = 690
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• The single stage amplifier is limited by the 1:N replicator gadget

• Achieves amplification of ~N times

• Can we just chain these together?

• First stage: Set the state of N cachelines based on the initial cacheline

• Second stage: Set the state of N*N cachelines based on the N cachelines from the first stage

• Third stage: Set the state of N*N*N cachelines based on the N*N cachelines from the second stage

• Etc.

• In theory, this could enable much higher amplification.  But it runs into practical problems:

• The size of the cache is limited…entire cache is consumed after 5th stage

• Other system interference creates additional noise

BEYOND SINGLE-STAGE
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• The Self-Reinforcing Amplifier is even better

• Idea:

• Use the single-stage amplifier but save one cacheline behind

• E.g. replicate input to 23 cachelines, but only time access to 22

• Use the saved cacheline to restore the state of the input line

• Rinse and repeat

• In diagram, Φ(X) means X is present in the cache

• Key point:

• The 1:N replicator accesses all N lines in parallel

• The access of lines 2…N is then done in series

CAN WE DO BETTER?

Amplify Signal S.  

Set ɸ(A1...n) = ¬ɸ(S)

Start

Access cachelines 

A2...An

Restore Signal S.  

Set ɸ(S) = ¬ɸ(A1)

Stop
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RESULTS
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Iterations (10k)

Signal strength increases 

consistently but only up to a 

point

With each iteration, there is a 

risk of signal corruption

700k looks like a good choice
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• Chart shows results from 1000 
runs

• Average signal strength was 
~600ms

• Can recover the state of the 
initial line with ~50% chance 
with a 500ms timer

• And 40% of indeterminate signal

• With a 100ms timer, correct 
signal retrieved 66% of the time

• Note: Negative signal strengths 
indicate incorrect recovery

700K AMPLIFIER
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• 100k is a better choice if a slightly 
better time is available

• Average signal strength: 182ms

• 82% chance of correct recovery 
with a 100ms timer

• And only 1% chance of incorrect 
recovery

• 95% chance of correct recovery 
with a 10ms timer

• 182ms is >2M amplification 
compared to baseline

100K AMPLIFIER
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MORE FUN WITH 
CACHELINES
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• Given N cachelines of which exactly 1 is present, determine which cacheline is present 
using the fewest timing measurements as possible

• Useful for side channel attacks where an array is indexed with a secret

• E.g. FLUSH+RELOAD attack where victim executes x = array[secret]

• Goal is to determine which array[] line was brought in

• Binary search seems like a good choice, but how can we do it without losing state?

• Every time a gadget is used, it will bring in the source cacheline

• We must find a way to preserve the initial state of the entire array before doing our search

BINARY SEARCH
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• 1. 1:2 Replicator
• For each line in signal array, set two lines in 

the working array to be the inverse

• 2. NAND Gadget
• Perform a multi-input NAND of lines 

corresponding to half the signal array

• E.g. 4-input NAND from an 8-wide initial array

• 3. Inverter
• For each untouched line in the working array, 

restore the original signal array

• If NAND result is 1, the present line is in 
that half

• Only timing measurement is needed on 
NAND result

BINARY SEARCH

NAND

Step 1

Signal Array 

(1 line present)

Working Array

(2 lines NOT present)

Logic Result

Step 2

Step 3
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• Different sizes were tested, with the present cacheline 
being selected randomly

• Number of timing measurements=Log2(Size)

• Note: Goal of binary search is to minimize number of 
timing measurements, *not* to maximize speed

• Binary search ~15-20x slower than simple method of 
testing each cacheline individually

BINARY SEARCH RESULTS

Size Accuracy (100k runs)

4 100%

8 100%

16 100%

32 100%

64 99.99%

128 92.37%

256 66.40%
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• Given N cacheline in unknown state, count the number of present cacheline using as few 
timing measurements as possible

• May be useful if the attacker is trying to infer which code path a victim took

• E.g. in one code path, the victim touches 5 lines, while in another, it touches 7

• Useful in PRIME+PROBE to count number of evicted lines

• We need a counter…but not exactly a traditional one

CACHELINE COUNTER
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• The state of our counter will be stored in the 
presence of a set of cachelines

• Example: 32 entry array of potentially present 
cachelines

• Attacker allocates 6 new cachelines, where each 
corresponds to a bit of an adder

• E.g. if the counter is 6’b001101 then

• Cache_Counter[0], [2], and [3] are present

• Cache_Counter[1], [4], and [5] are not present

• Initially, all cachelines corresponding to the counter 
are not present (counter=0)

• We then “add” each input cacheline into our 
counter

CACHELINE COUNTER

NAND

NOT (3 outputs)

NOT (3 outputs)

NOT

NOT

NOT

NOT

NAND

NAND

NAND NOT

Carry

Sum
A

B
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COUNTER EXAMPLE (SIZE 4)

Counter[0] Counter[1] Counter[2]Input[0] Input[1] Input[2] Input[3]

Counter[0] Counter[1] Counter[2]Input[0] Input[1] Input[2] Input[3]

Counter[0] Counter[1] Counter[2]Input[0] Input[1] Input[2] Input[3]

Counter[0] Counter[1] Counter[2]Input[0] Input[1] Input[2] Input[3]

Counter[0] Counter[1] Counter[2]Input[0] Input[1] Input[2] Input[3]

Initial State

Process 

Input[0]

Process 

Input[1]

Process 

Input[2]

Process 

Input[3]

Present

Not Present
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• Different sizes were tested, with randomized initial 
configurations

• Number of timing measurements needed=Log2(Size+1)

• Only need to read the state of the cachelines 
corresponding to the counter at the end

• High accuracy across all tested sizes

• Doesn’t have large fan-in/fan-out gadgets

COUNTER RESULTS

Size Accuracy (100k runs)

4 99.99%

8 99.98%

16 99.94%

32 99.84%

64 99.70%

128 98.28%

256 97.98%
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CONCLUSION
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• As shown, signal amplification works and can result in signal strengths easily measurable by 
extremely coarse timers

• All results shown were based on a single cacheline from a single run.  If the victim can be invoked 
multiple times, accuracy will skyrocket

Disabling high precision timers is a weak mitigation for side channel attacks

• First off, signal amplification can make it such that such timers are not needed often

• And using logic gadgets to manipulate cache signals before reading can greatly reduce the number 
of measurements needed

Monitoring access to timers is also a weak mitigation

• Performing logical operations like binary searches could improve performance if every 
measurement requires significant amplification

Signals can be computed on before measurement

KEY TAKEAWAYS
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• This work is (to my knowledge) one of the first to focus on the signal recovery aspect of side 
channel attacks

• But if the attack is not able to get to the signal recovery stage, no extra mitigations are needed

• Mitigations are most effective at preventing the attack in the first place

• Fences to prevent unwanted speculation

• Non-secret dependent memory accesses

• Etc.

• Even though timer restrictions are clearly ineffective, they can still be a defense-in-depth 
measure

MITIGATIONS
• Prepare the cache 

state as required

• Puts certain 
cachelines into known 
states

Setup

• Execute the victim

• Victim perturbs the 
state of the cache in 
some way

Execution
• Examine the new state 

of the cache

• Infer information about 
the victim based on 
the cache state

Recovery
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• There are likely more types of gadgets and interesting use cases

• Can errors be minimized and/or corrected when doing these operations?

• Can amplifiers be improved beyond what was shown?

• Does storing state in the presence of cachelines become a computing paradigm?
• State stored in the presence of cachelines cannot be viewed without perturbing it
• Could this be a way to detect side channel attacks?

• Keep an eye out for the paper by Katzman, et al.

FUTURE WORK

Questions?
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