
Unwanted features:
Finding and exploiting an
in ROM buffer overflow on
the LPC55S69

Intro

Hi! I'm Laura!

2 / 65

Intro

Hi! I'm Laura!

I work for Oxide! We're making a server!

2 / 65

Intro

Hi! I'm Laura!

I work for Oxide! We're making a server!

It has a Hardware Root of Trust

2 / 65

Extending Trust

+---------+-----------+ +-------------+ +-------------+
+-------+						
	++-->					
	ROM	RoT Code +--->	SP +-->	Host		
+--------+						
+---------+-----------+ +-------------+ +-------------+

3 / 65

Root of Trust Requirements

A strong assertion regarding the integrity and authenticity
of RoT firmware and hardware configuration

A tamper-resistant, impersonation-resistant unique ID

A mechanism for extending trust to additional devices

A mechanism for re-establishing trust after a compromise

4 / 65

NXP LPC55S69

Dual-core Cortex-M33

CPU0 has TZ-M and MPU

AES, SHA, and GF(p) accelerators

SRAM-based PUF w/ protected key path to AES
accelerator

Secure boot (RSA-2048 or RSA-4096)

DICE for measuring running code

5 / 65

We're shipping software

Hardware features are useless without software

We need a way to deliver software updates

6 / 65

The software
update problem

7 / 65

The software
update problem

8 / 65

Vendor value add

9 / 65

NXP's format for updates: SB2

https://github.com/NXPmicro/spsdk

Stands for Secure Boot

SB2.0 = Encrypted, SB2.1 = Signed and Encrypted

10 / 65

https://github.com/NXPmicro/spsdk

SB2 format details

Works in 16 byte blocks (also encryption block size)

Unencrypted header (fixed size number of blocks)

HMACs for commands/data

Keyblob for encryption

x.509 certificate if signed

Commands and data (encrypted!)

11 / 65

SB2 format details

12 / 65

A short history of silicon consolidation

Came from Sigmatel, used in media chips

Sigmatel was acquired by Freescale

Freescale was merged into NXP

13 / 65

Keys on the
LPC55S69

UDS in key store is used with
DICE

SBKEK in the Key Store is used
for decryption

CMPA contains hash of public
keys

When sealed CMPA and Key
Store cannot be modified

14 / 65

Threat modeling

Parsing/Generating this code seems hard.

This is the Root of Trust, if this is broken everything is
broken

Difficult things are where bugs can be found!

15 / 65

Previous work

Undocumented ROM patch hardware block can be used to
break privilege boundaries

"Breaking TrustZone-M: Privilege Escalation on
LPC55S69" @ DEFCON 2021 with my
colleague Rick
Altherr

Good reason to be suspcious!

Handy ROM dump hanging around

16 / 65

NXP's ROM

First code that gets run

Entry points for runtime (writing to flash, power
management,
signed image verificaiton, update code)

Global state held in SRAM 0x1400_0000-0x1400_8000

17 / 65

ISP (In-System Programming)

Protocol over UART/SPI/I2C/CAN

Fixed set of commands

No access via JTAG/SWD when in ISP mode!

Commands are restricted when CMPA is sealed, must use
SB2 format to make
modification to flash

18 / 65

ISP mode

+-----------+ +------------+
	UART	
LPC55	<--------->	Host
+-----------+ +------------+

19 / 65

Parsing the update

PSEUDO CODE

struct parsing_state {
 ...
 uint32_t next_addr;
 ...
 uint8_t[16] copied_data;
 ...
}

752 byte global storing parsing state

20 / 65

Parsing the update

struct parsing_state global_parsing_state;

void init_parsing_state() {
 memzero(global_parsing_state,
 sizeof(global_parsing_state));
 global_parsing_state.next_addr = first_sb2_fn;
}

21 / 65

Parsing the update

PSEUDO CODE

struct parsing_state global_parsing_state;

uint32_t parse_update_bytes(uint8_t *data, uint32_t len) {
 uint32_t offset = 0;

 while offset < len {
 memcpy(&global_parsing_state.copied_data + offset,
 data + offset, 16);
 global_parsing_state.next_addr();
 offset += 16;
 }
}

22 / 65

First function

23 / 65

Updated global state

struct parsing_state {
 ...
 uint32_t next_addr;
 ...
 uint8_t[16] copied_data;
 ...
 sb2_header header;
 ...

}

24 / 65

Second function

This is untrusted input!
25 / 65

Third function

Oh no another underflow

26 / 65

Fourth function

The value that is being stored into m_count is coming
straight from header

27 / 65

Fifth function

28 / 65

Fifth function

Unless the callback gets updated this will call the same
function again

Callback is within the if condition

Will call memcpy each time until it reaches m_count

This is attacker controlled input! Buffer overflow!

29 / 65

Global Space

30 / 65

Heap allocation?

Very simple bump allocator

ROM is very simple, nearly everything is stack allocated

Exceptions are certificate parsing -- library seems to be a
form of mbedTLS!

31 / 65

Heap Allocation

32 / 65

Heap Allocation

We copy the header to the heap

33 / 65

What do we have

Can overwrite address of heap

Header gets copied to an address we choose

How can we get code exec?

34 / 65

We have a convenient callback!

Address of callback is at offset 0x4 of the global parsing
structure

Offset 0x4 of our header contains nonce data

If we put an address in place of our nonce we can control
the address

35 / 65

Putting it all together

Craft a custom header with keyBlobBlock set to the amount to write

Header has address to jump to at offset 0x4

Pad out bytes to overwrite heap address with start of global
structure

After memcpy ing the header on the next loop it will jump to our
address

Winner!

36 / 65

0x14001478 +-----------------------------+ ----+
 | Next Fn | |
 +-----------------------------+ |
 | | |
 | | |
 | | |
 +-----------------------------+ | Global Parsing state
 | | |
 | SB2 Header | |
 | | |
 +-----------------------------+ |
 | | |
 | | |
 +-----------------------------+ ----+
 | Heap Address | |
 +-----------------------------+ | Heap State
 | | |
 +-----------------------------+ ----+

37 / 65

0x14001478 +-----------------------------+ ----+
 | Next Fn | |
 +-----------------------------+ |
 | | |
 | | |
 | | |
 +---+-------------------+-----+ | Global Parsing state
 | | | | |
 | | SB2 Header | | |
 | | | | |
 +---+-------------------+-----+ |
 | | | | |
 | | | | |
 +---+-------------------+-----+ ----+
 | v 0x14001478 v | |
 +-----------------------------+ | Heap State
 | | |
 +-----------------------------+ ----+

38 / 65

0x14001478 +-----------------------------+ ----+
 | Value from our header | |
 +-----------------------------+ |
 | | |
 | | |
 | | |
 +---+-------------------+-----+ | Global Parsing state
 | | | | |
 | | SB2 Header | | |
 | | | | |
 +---+-------------------+-----+ |
 | | | | |
 | | | | |
 +---+-------------------+-----+ ----+
 | v 0x14001478 v | |
 +-----------------------------+ | Heap State
 | | |
 +-----------------------------+ ----+

39 / 65

Not full execution

Only gets access to ROM addresses

SAU/MPU protections are enabled.

As a hacker I am saddened.

As a product developer I am thrilled

40 / 65

Previous work on the ROM patcher

ROM patcher can insert svc instructions to trigger a
system call

The point of ROM patching is that the data isn't in ROM

Also must be executable

Where does the table live? A region at towards the end of
SRAM

41 / 65

+------------------------------+
| |
| |
| |
| |
| Global Parsing State |
| |
| |
| |
| |
+------------------------------+
Heap State	
+------------------------------+	
Other Stuff	
We (mostly)	
don't care about this	
+------------------------------+	
Executable ROM Patch Area	v
+------------------------------+

42 / 65

232 bytes from the end and we hit a snag!

43 / 65

232 bytes from the end and we hit a snag!

44 / 65

Canaries

I <3 stack canaries this is a good thing!

We're overwriting the global part of the stack canary

Doesn't get detected in the SB2 parsing, further up in the
ISP code

Reverse stack canary -- we're not detecting a stack smash

45 / 65

Workaround

46 / 65

Putting it all together

Custom header with keyBlobBlock set to the length we need to write
and
offset 0x4 set to our executable region of SRAM.

Overwrite our heap address with the address of parsing global state

Continue writing right up to the stack canary

Overwrite the stack canary + executable area in one 512 byte chunk

Executable area contains a small payload to turn off SAU/MPU, do a
jump
wherever

Finish our overflow, copy our header to the heap address (i.e. global
state)

Next time around the parsing loop we execute our executable
function!

47 / 65

Demo!

48 / 65

Product implications

Worth discussing what this can't get you

Can't unseal anything (CMPA/NMPA)

If sealed, CMPA and keystore cannot be changed.

Region of flash covered by a signed image can't be
changed

49 / 65

Product Implications

Unprogramed pages == open for business

Image rollback!

CFPA, lead to DoS

Running with an unsealed device really in trouble

50 / 65

DICE

+--------------------+
|Device Secret +------+
+--------------------+ |
 +v-----------+
 |Identity |
 +^-----------+
+--------------------+ |
|Hash of Running code+------+
+--------------------+

 ID = KDF(UDS, HASH(CODE))

51 / 65

PUF

+----------------+
|Chip Fingerprint+-----------+
+----------------+ |
 |
+----------------+ | +---------------+
| Key Index +-----------+----> |Key Code |
+----------------+ | +---------------+
 |
+----------------+ |
| Key Data +-----------+
+----------------+

52 / 65

PUF Registers -- Before

ROM designates key #15 for the UDS

53 / 65

PUF Registers -- After

A consequence of how DICE works: cannot be locked until
after the image is
booted, at the time of image update we
do not know the image!

54 / 65

Fixes?

This code is in ROM

We need new hardware

Semicoductor shortage? :shrug:

55 / 65

Hey aren't you trying to build a product out of
this

I promise my job is not just vuln hunting

Oxide encourages this research and also really wish there
were fewer bugs for
me to find

This is the second vulnerability we've found in this chip!

56 / 65

Why not switch chips?

There were very few other candidates out there that met
our requirements

Even before the shortage could not get hands on actual
silicon

Need to do another cycle of review and validation

Could find even more problems

57 / 65

Workaround: Can you validate the update?

Theoretically yes!

What does the validation now becomes part of our trusted
base. How much do
we trust the validation code?

If we weren't building a Root of Trust this might be
different!

58 / 65

Workaround: Siganture checking?

Changes the threat model

Signed code tells you nothing about correctness

A signature only tells you the code came from a particular
source

If we weren't building a Root of Trust this might be
different!

59 / 65

Oxide Answer: don't use this code at all

Only using it because some engineer decided she didn't
want to write update
code

Positive side: don't have to write SB2 parsing code

60 / 65

Takeaways

61 / 65

Validate your input

Obviously

Especially in ROMs (give us your ROM source)

62 / 65

Needed to get several things right

MPU/SAU == Good

Stack canary == Good

Got lucky with convenient layout in the global space

Make it hard for attackers

63 / 65

No single right answer for your product

"It depends" is an annoying answer

Alternate universe: we ran into other issues and had time
to swap out the chip.

If the product is focused around the LPC55 that also
changes consideration

64 / 65

Thank you!

