
Francesco Restuccia - hardwear.io 06/09/2022

Exploiting AMBA AXI protocol for Denial-of-Service
attacks of shared resources

1

http://hardwear.io

2

Who am I

Used to have longer beard

Currently: Postdoctoral researcher @ UCSD

Ph.D. computer engineering @ Retis Lab, Italy
(2021)

Hardware security - access control systems

Timing predictability, safety, and security for FPGA
SoC platforms

Time-predictable DNN acceleration for FPGA SoC
platforms

Francesco Restuccia

In a nutshell

Uneven bandwidth distribution
Denial-of-service conditions

Explore, analyze, and address safety and security concerns in a popular on-chip
communications standard

Lesson learned, solutions, and guidelines
3

Detected threats

Circular dependencies among hardware modules able to threaten the availability of the
shared resources

Unfair bandwidth distribution

Denial-of-service of shared resources

Critical computation systems

Avionics, space applications, cars (autonomous), robots, medical devices

“Safety-critical systems are those systems whose failure could result in loss of life,
significant property damage, or damage to the environment.”

4

Typical requirements

Safety

Timing predictability
(real-time)

Isolation

5

Security

Embedded

Power efficiency

High throughput

What we aim for!

Popular heterogenous platforms

Specialization

GPU SoCs FPGA SoCs

6

Performance/Power Ratio

Custom

SoCs

Credits: NVIDIA corporation
Credits: Xilinx Inc

Anatomy of a typical heterogenous platform
Multiple heterogenous modules (controllers + peripherals)

Controllers -> active (processors, DMAs,
hardware accelerators, etc.)

Peripherals -> passive (Memories, IO, etc.)
(memory-mapped)

System interconnect

7

Interactions among modules

Interconnect arbitrates the interactions
among controllers and peripherals

8

Peripherals are typically shared among
controllers

Multiple controllers generate interference on
the shared resources

Heterogenous modules -> heterogenous
interactions

The AMBA AXI standard

9

AXI defines a manager/subordinate interface

5 channels, handled independently

Popular standard for communication on
modern heterogenous SoCs

Each controller has a separated
communication interface -> isolation (electrical)

Popular standard for communication on modern
heterogeneous SoCs

Each controller has a separated
communication interface -> isolation (electrical)

A real platform example

10

Hardware accelerators deployed in the FPGA
fabric as our test controller managers

Credits: Zynq Ultrascale trm

Threat model

11

Trusted

Interconnect and peripherals

Untrusted

Controllers (Third-party IPs, affected by bugs,
superficial security verification, etc.)

We focus on the availability (to the controllers) of the shared peripherals
during the system execution

The beginning of our journey

12

FPGA SoCs for next-generation cyber-physical
systems

Challenge: Timing predictability of bus/memory
interactions

Our main aim: bound the response times of bus/
memory interactions

Credits: Xilinx

Credits: Xilinx

We ended up facing safety and security issues at first

(We eventually published two papers on timing predictability afterward)

Test architecture

• Tell the story - while developing an application for benchmark

13

Three equal Xilinx DMA HAs on the FPGA

Stock AXI interconnect from the vendor

Round-robin arbitration in the interconnect:
expected fair bandwidth distribution

Test the assigned bandwidth to the HAs by the
interconnect in accessing the shared

resources (memory)

Measured bandwidth

• Tell the story - while developing an application for benchmark

Configuration of the interfering HAs

The bandwidth of a HA under analysis
drops changing the configuration of the

interfering HAs

14

Set one HA as the device under analysis

Set the other two HAs to generate maximum
interference

Instead of being a property defined by the
interconnect, the assigned bandwidth
depends on interfering HAs

Investigation - hardware track

15

Xilinx PYNQ (ZYNQ 7000 SoC) Xilinx ZCU102 (Ultrascale+ MPSoC)

DEMO

Analysis - Simplified diagram
Interconnect serves the HAs following a
round-robin schema

16

Analysis - Simplified diagram
Interconnect serves the HAs following a
round-robin schema

17

This allows a HA to affect the bandwidth
assigned to another HA!

The granularity on data depends on the bus
structure of the transactions

Such structure is decided by the HA!

Impact on assigned bandwidth

18

Number of
interfering modules

Burst length of interfering modules

Proposed a simple mathematical model (paper)

Example: burst length of the HA under analysis set to 16 words

Bandwidth associated
with the HA under analysis

Impact on assigned bandwidth

19

Number of
interfering modules

Burst length of interfering modules

Fair bandwidth distribution

88% drop with respect to the expected bandwidth

Should we care about this issue?

How likely is that to happen?

20

Where does the controllers come from
Different sources

In-house development (expensive)

Third-party outsourced modules (popular)

21

Different development

Register Transfer Level (RTL) (Verilog, VHDL,
SystemVerilog, etc.)

High-level synthesis (HLS) (Catapult, Vivado
HLS, Intel HLS, etc.)

Hardware Construction Languages (Chisel)

Module integration challenges

Verification

Complexity of the IP modules

HLS-generated code

Encrypted third-party IP modules

Dependencies

Among multiple modules

Modules may be software configurable

22

Different versions of the standard - different allowable burst lengths

HLS compilers may choose by default the structure of the transactions
Different from compiler to compiler

Low-level detail that may be hidden (abstracted)

Summarizing - Lesson learned

Proposed solution and more experimental results later in the presentation

Leaving the controllers defining the structure of their transactions may strongly affect
the available bandwidth of other modules

Create circular dependencies among modules
Unexpected bandwidth distribution

Affect the availability of shared resources

23

On dependencies of write transactions

24

We developed our own AXI-compliant
controller for cycle-accurate profiling

Found an interesting behavior during
development

DEMO
Xilinx ZCU102 (Ultrascale+ MPSoC)Xilinx PYNQ (ZYNQ 7000 SoC)

AXI bus stalls - analysis

25

1

2

3

a) and send a request for
transaction

b) The round-robin arbiter transmits the
transaction of first

HA1 HA2

HA1

c) is ready to propagate data, but
cannot access the shared bus because
booked by

d) As long as does not provide whole
data words, the bus is stalled.

HA2

HA1

HA1

26

From AMBA® AXI and ACE Protocol Specification

AXI bus stalls - analysis

27

When the transaction generated by is propagated, the write data channel in the
shared output bus is assigned to

The interconnect is trusting that it will fulfil the transaction and leave the bus to
others as soon as possible

HA0
HA0

HA0

AXI bus stalls - analysis

28

Delaying its data provisioning, a single module can deny the access to all of the
peripherals from the other controllers

The protocol is not broken! No maximum delay is defined in the standard

Consequences

A single controller can exploit this lack of specification to denial the access to
the shared resources from all of the other controllers

29

As long as a transaction is kept pending by an HA, no other controllers can write data

The timings of the other HAs are affected

The availability of the shared resources is compromised

The network is left in an inconsistent state - a system reset may be required

Should we care about this issue?

How likely is that to happen?

30

Optimizations

Speculative bus access

Delays in data provisioning

Potential source of bus stalls
Misbehaviour/Fault

Bugs in development/
testing

Malicious behaviour

31

How this lack of specification can be exploited

32

Malicious/misbehaving hardware module

Directly acting on the valid line of the W channel (wvalid)

Delaying the write data production after a write request is issued

Delaying data read operation (in speculative-access modules)

Example of speculative bus access

33

Xilinx Deep-Learning Processing Unit (DPU)

Most recent DNN hardware accelerator proposed by Xilinx

Part of the Xilinx Vitis AI framework

We customized the Vitis AI hardware design integrating a System ILA to
analyze the DPU execution (+ other custom profilers)

Credits: xilinx.com Xilinx ZCU102 (Ultrascale+ MPSoC)

http://xilinx.com

DPU execution hardware track

34

Write channel booked by the DPU but no data are propagated

Request for writing 108 words 12 words of data provided

324 cycles Still not completed

Another example of speculative bus access

35

Xilinx Central Direct Memory Access (CDMA)

Direct Memory Access between a source buffer and
a destination buffer

Created a hardware design to monitor the CDMA execution

CDMA execution hardware track

36

The write request is issued before receiving the data to be written

Stall on write depends on the delay for receiving the read data

The shared write bus is booked (stalled) and cannot be used by other controllers

The impact

Average performance

Lower than expected

Waste cycles on data channel

37

Safety

Create circular dependencies among controllers

Broken isolation among controllers

Security

Endanger the availability of shared resources

Exploitable for denial-of-service attacks of shared resources

Test on a realistic mixed-critical scenario
Target platform: Xilinx Ultrascale+ MPSoC

38

Inspired by common functionalities required in
modern autonomous vehicles

High-critical:

Deep learning hardware acceleration (CHaiDNN)

Critical sensor/actuation (real-time constraints)

Low-critical:

Generic data mover (possibly injecting stalls)

Xilinx ZCU102 (Ultrascale+ MPSoC)

The CHaiDNN hardware accelerator

39

CHaiDNN

hardware accelerator

Processing System

(DRAM memory)

Convolutional

accelerator

The mixed-critical architecture

40

Critical

accelerator

Malicious/

misbehaving

(Injected fault)

CHaiDNN

accelerator

Nominal behaviour

41

CHaiDNN

hardware accelerator

Critical accelerator

 not

triggered
HA2

PS: Xilinx CHaiDNN stock Petalinux

FPGA: mixed-critical design (CHaiDNN
+ critical module + misbehaving)

Accelerators leveraged by SW-tasks
running on Linux

Requirements:

CHaiDNN (): minimum FPS
Critical module (): execute before
deadline

SWDNN

SWRT

Good execution

Malicious/

misbehaving

(not triggered)

Injecting AXI stalls

42

CHaiDNN

hardware accelerator

Critical accelerator

 inject stallsHA2

SW-task running in PS requests a data
movement from HA2

The stall introduced by denies
memory access from the CHaiDNN and

the critical HAs

HA2

Broken execution

Malicious/

misbehaving

injecting stalls

U
nb

ou
nd

ed

Ze
ro

Any timing performance requirement is
broken a-priori

Summarizing criticalities

43

1. The protocol is not broken! May be difficult to detect during verification

2. No default recovery mechanisms provided - AXI transactions cannot be
aborted

3. A misbehaving module can directly influence the execution of others

1. The protocol is not broken! Can be difficult to detect in a superficial
functional verification

2. No default recovery mechanisms provided - AXI transactions cannot be
aborted

3. No maximum time for stall defined - can be unbounded

4. Circular dependencies among modules - isolation broken

Summarizing - Lesson learned

Proposed solution and more experimental results later in the presentation

Leaving the controllers the freedom of delaying their data provisioning can affect the
availability of the shared resources

…this can be exploited to introduce a denial-of-service of shared resources!

44

45

Proposed solutions

Solving unfair bandwidth distribution

46

Need a solution to equalize the structure of the
transactions issued by the HAs

Cannot just stick a constant to burst length signal

Source of the issue

Data structure of transactions is left to be decided
by the controller itself

This can even change dynamically during
execution

The AXI burst equalizer (ABE)

47

Enforce a fair per-manager granularity on data

Essential module to be placed between
controllers and the interconnect

Enforce a nominal bus configuration of the HAs

Makes transactions homogenous

AXI compliant - transparent

The interconnect arbitrates homogenous
transactions

The AXI burst equalizer in action

48

The AXI burst equalizer in action

49

Associated bandwidth is fair, predictable, and independent of the structure of
the transactions

Interfering

Interfering

Device under

test

Preventing denial of service of shared resources

• Stall budget + recovery features

50

The solution should be able to:

1) Recognize when a stall is endangering the system execution

2) Restore a safe condition of the bus - guarantee access from the other HAs

Source of the issue: controllers are trusted to complete (rapidly) their initiated
write transactions and release the bus

How do we know when a stall is dangerous?

• Stall budget + recovery features

51

Stalls may be introduced by managers during normal execution

1. When does a stall become a threat to the system execution?

a) Defined the model for the HAs, interconnect,
and peripherals

b) Propose a worst-case response time analysis
for the HAs

c) Find the maximum acceptable time for stalling
the bus (correlated to the slack)

Full mathematical analysis in the paper

The AXI Stall Monitor (ASM)

• Stall budget + recovery features

52

Monitor the HAs and intervene when system
schedulability is endangered

Configured with a stall budget found with the
worst-case analysis

2. How to take back control of the bus when stalled?

Takes back the control of the bus completing the pending stalled transactions
when the system execution (schedulability) is endangered

Leave the other controllers access to the shared bus

The AXI Stall Monitor in action

• Stall budget + recovery features

53

The AXI Stall Monitor in action

• Stall budget + recovery features

54

Limitations of ASM

55

Limitations

Need to fully know the bus workload
(periodic)

Need to apply a worst-case analysis

A great solution for real-time systems

Developed a more versatile and elegant solution

Paper currently under peer review process - stay tuned!

CHaiDNN

hardware accelerator

Critical accelerator

Malicious/

misbehaving

injecting stalls

Example:
ASM cannot be applied to mixed-critical scenarios (like the CHaiDNN one)

The criticality of the access control system

56

Challenges

The access control system deployed in commercial platforms may show limited
functionalities

Access control systems are sadly known to be a common source of bugs/
weaknesses

The access control plays a crucial role in the
security of a system

Defines who (controllers) access what
(peripherals)

Best approach: give minimum access to the
controllers

Top 12 CWEs for 2021 - related to access control

57

The AKER framework

58

AKER is a framework for building safe and secure
access control systems

AKER is based on two pillars

The access control
wrapper (ACW)

Universal building block
for AKER-based access
control systems

AKER security
verification

Extensive property-based
addressing the MITRE
CWEs

Concluding remarks

59

Guidelines for secure integration of controllers

60

Meza, A., Restuccia, F, Kastner, R, and Oberg, J (2022, July). Safety Verification of Third-Party Hardware Modules via
Information Flow Tracking. In 2022 Real-time And intelliGent Edge computing workshop @ Design and Automation
Conference (DAC). To appear.

Proposal

Leveraged Information Flow Tracking (IFT) to verify the
safety of bus interactions among on-chip hardware
resources.

Tortuga Logic Radix-S IFT tool

Perform an extensive safety/security verification of
the bus interaction of the controllers

61

Enforce fair and
predictable bus access

Prevent denial of service
of shared resources

Safe and secure access
control system

The AXI HyperConnect

+
new solution

The AXI HyperConnect +

62

Research interconnect enforcing
secure and safe bus interactions

For standalone use
or

Integrated with CLARE - Hypervisor
extension

CLARE is a hypervisor-centric software
stack for secure, safe, and time-predictable

Cyber-Physical Systems

https://accelerat.eu/

AXI HyperConnect features

63

Next steps on the HyperConnect:

Extensive safety/security verification

Automatic firmware management and configuration

Integration example HyperConnect - mixed-critical application

64

Critical

accelerator

Malicious/

misbehaving

(Injecting stalls)

CHaiDNN

accelerator

AXI

HyperConnect

Zynq PS

Injecting AXI stalls - previous example

65

CHaiDNN

hardware accelerator

Critical accelerator

 inject stallsHA2 Broken execution

Malicious/

misbehaving

injecting stalls

U
nb

ou
nd

ed

Ze
ro

AXI interconnect

 inject stallsHA2 System is kept operational

AXI HyperConnect

AXI interconnect AXI HyperConnect

Collaborators

66

Industrial collaborators: Intel corporation, Tortuga Logic, Leidos.

Ryan Kastner Andres Meza

Alessandro Biondi Marco Pagani Giorgiomaria Cicero Giorgio ButtazzoMauro Marinoni

Jason Oberg

Contacts and references

67

Restuccia, F., Pagani, M., Biondi, A., Marinoni, M., and Buttazzo, G. (2019). Is your bus arbiter really fair? restoring fairness in axi interconnects for fpga socs. ACM
Transactions on Embedded Computing Systems (TECS), Presented at ESWEEK - CASES 2019, New York, USA.

Restuccia, F., Biondi, A., Marinoni, M., and Buttazzo, G. (2020, May). Safely preventing unbounded delays during bus transactions in FPGA-based SoC. In 2020 IEEE 28th
Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM).

Restuccia, F., Biondi, A., Marinoni, M., Cicero, G., and Buttazzo, G. (2020, July). AXI hyperconnect: A predictable, hypervisor-level interconnect for hardware accelerators
in FPGA SoC. In 2020 57th ACM/IEEE Design Automation Conference (DAC)

Restuccia, F., Meza, A., and Kastner, R. (2021, November). Aker: A design and verification framework for safe and secure SoC access control. In 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD)

Meza, A., Restuccia, F, Kastner, R, and Oberg, J (2022, July). Safety Verification of Third-Party Hardware Modules via Information Flow Tracking. In 2022 Real-time And
intelliGent Edge computing workshop @ Design and Automation Conference (DAC). To appear.

On timing predictability for bus interactions:

Restuccia, F., and Biondi, A. (2021, December). Time-Predictable Acceleration of Deep Neural Networks on FPGA SoC Platforms. In 2021 IEEE Real-Time Systems
Symposium (RTSS).

Restuccia, F., Pagani, M., Biondi, A., Marinoni, M., and Buttazzo, G. (2020). Modeling and analysis of bus contention for hardware accelerators in FPGA SoCs. In 32nd
Euromicro Conference on Real-Time Systems (ECRTS 2020).

frestuccia@ucsd.edu

Linkedin

mailto:frestuccia@ucsd.edu

