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In a nutshell

Uneven bandwidth distribution
Denial-of-service conditions

Explore, analyze, and address safety and security concerns in a popular on-chip 
communications standard

Lesson learned, solutions, and guidelines
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Detected threats 

Circular dependencies among hardware modules able to threaten the availability of the 
shared resources


Unfair bandwidth distribution


Denial-of-service of shared resources



Critical computation systems

Avionics, space applications, cars (autonomous), robots, medical devices

“Safety-critical systems are those systems whose failure could result in loss of life, 
significant property damage, or damage to the environment.”
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Typical requirements

Safety 

Timing predictability 
(real-time)


Isolation
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Security

Embedded 

Power efficiency


High throughput

What we aim for!



Popular heterogenous platforms

Specialization

GPU SoCs FPGA SoCs
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Performance/Power Ratio

Custom 

SoCs

Credits: NVIDIA corporation
Credits: Xilinx Inc



Anatomy of a typical heterogenous platform
Multiple heterogenous modules (controllers + peripherals) 


Controllers -> active (processors, DMAs, 
hardware accelerators, etc.)

Peripherals -> passive (Memories, IO, etc.) 
(memory-mapped)

System interconnect
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Interactions among modules

Interconnect arbitrates the interactions 
among controllers and peripherals
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Peripherals are typically shared among 
controllers

Multiple controllers generate interference on 
the shared resources


Heterogenous modules -> heterogenous 
interactions



The AMBA AXI standard
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AXI defines a manager/subordinate interface


5 channels, handled independently

Popular standard for communication on 
modern heterogenous SoCs


Each controller has a separated 
communication interface -> isolation (electrical)

Popular standard for communication on modern 
heterogeneous SoCs


Each controller has a separated 
communication interface -> isolation (electrical)



A real platform example
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Hardware accelerators deployed in the FPGA 
fabric as our test controller managers


Credits: Zynq Ultrascale trm



Threat model
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Trusted  

Interconnect and peripherals

Untrusted 

Controllers (Third-party IPs, affected by bugs, 
superficial security verification, etc.)


We focus on the availability (to the controllers) of the shared peripherals 
during the system execution



The beginning of our journey
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FPGA SoCs for next-generation cyber-physical 
systems 

Challenge: Timing predictability of bus/memory 
interactions


Our main aim: bound the response times of bus/
memory interactions

Credits: Xilinx

Credits: Xilinx

We ended up facing safety and security issues at first 

(We eventually published two papers on timing predictability afterward)



Test architecture

• Tell the story - while developing an application for benchmark
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Three equal Xilinx DMA HAs on the FPGA


Stock AXI interconnect from the vendor

Round-robin arbitration in the interconnect: 
expected fair bandwidth distribution

Test the assigned bandwidth to the HAs by the 
interconnect in accessing the shared 

resources (memory)



Measured bandwidth 

• Tell the story - while developing an application for benchmark

Configuration of the interfering HAs

The bandwidth of a HA under analysis 
drops changing the configuration of the 

interfering HAs
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Set one HA as the device under analysis


Set the other two HAs to generate maximum 
interference


Instead of being a property defined by the 
interconnect, the assigned bandwidth 
depends on interfering HAs



Investigation - hardware track
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Xilinx PYNQ (ZYNQ 7000 SoC) Xilinx ZCU102 (Ultrascale+ MPSoC)

DEMO



Analysis - Simplified diagram
Interconnect serves the HAs following a 
round-robin schema

16



Analysis - Simplified diagram
Interconnect serves the HAs following a 
round-robin schema
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This allows a HA to affect the bandwidth 
assigned to another HA!

The granularity on data depends on the bus 
structure of the transactions


Such structure is decided by the HA!



Impact on assigned bandwidth
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Number of  
interfering modules

Burst length of interfering modules

Proposed a simple mathematical model (paper)


Example: burst length of the HA under analysis set to 16 words

Bandwidth associated  
with the HA under analysis 



Impact on assigned bandwidth
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Number of  
interfering modules

Burst length of interfering modules

Fair bandwidth distribution

88% drop with respect to the expected bandwidth



Should we care about this issue?

How likely is that to happen?
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Where does the controllers come from 
Different sources 

In-house development (expensive)


Third-party outsourced modules (popular)
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Different development 

Register Transfer Level (RTL) (Verilog, VHDL, 
SystemVerilog, etc.)


High-level synthesis (HLS) (Catapult, Vivado 
HLS, Intel HLS, etc.)


Hardware Construction Languages (Chisel)



Module integration challenges

Verification 

Complexity of the IP modules


HLS-generated code 


Encrypted third-party IP modules

Dependencies 

Among multiple modules


Modules may be software configurable
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Different versions of the standard - different allowable burst lengths 

HLS compilers may choose by default the structure of the transactions 
Different from compiler to compiler

Low-level detail that may be hidden (abstracted)



Summarizing - Lesson learned

Proposed solution and more experimental results later in the presentation

Leaving the controllers defining the structure of their transactions may strongly affect 
the available bandwidth of other modules


Create circular dependencies among modules  
Unexpected bandwidth distribution

Affect the availability of shared resources
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On dependencies of write transactions
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We developed our own AXI-compliant 
controller for cycle-accurate profiling


Found an interesting behavior during 
development

DEMO
Xilinx ZCU102 (Ultrascale+ MPSoC)Xilinx PYNQ (ZYNQ 7000 SoC)



AXI bus stalls - analysis
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1

2

3

a)  and  send a request for 
transaction


b) The round-robin arbiter transmits the 
transaction of  first

HA1 HA2

HA1

c)  is ready to propagate data, but 
cannot access the shared bus because 
booked by 


d) As long as  does not provide whole 
data words, the bus is stalled.

HA2

HA1

HA1
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From AMBA® AXI and ACE Protocol Specification



AXI bus stalls - analysis
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When the transaction generated by  is propagated, the write data channel in the 
shared output bus is assigned to 


The interconnect is trusting  that it will fulfil the transaction and leave the bus to 
others as soon as possible 

HA0
HA0

HA0



AXI bus stalls - analysis
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Delaying its data provisioning, a single module can deny the access to all of the 
peripherals from the other controllers


The protocol is not broken! No maximum delay is defined in the standard



Consequences

A single controller can exploit this lack of specification to denial the access to 
the shared resources from all of the other controllers

29

As long as a transaction is kept pending by an HA, no other controllers can write data


The timings of the other HAs are affected

The availability of the shared resources is compromised 

The network is left in an inconsistent state - a system reset may be required



Should we care about this issue?

How likely is that to happen?
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Optimizations 

Speculative bus access


Delays in data provisioning

Potential source of bus stalls
Misbehaviour/Fault 

Bugs in development/
testing

Malicious behaviour
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How this lack of specification can be exploited
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Malicious/misbehaving hardware module 

Directly acting on the valid line of the W channel (wvalid)


Delaying the write data production after a write request is issued


Delaying data read operation (in speculative-access modules)



Example of speculative bus access
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Xilinx Deep-Learning Processing Unit (DPU) 

Most recent DNN hardware accelerator proposed by Xilinx


Part of the Xilinx Vitis AI framework

We customized the Vitis AI hardware design integrating a System ILA to 
analyze the DPU execution (+ other custom profilers)

Credits: xilinx.com Xilinx ZCU102 (Ultrascale+ MPSoC)

http://xilinx.com


DPU execution hardware track
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Write channel booked by the DPU but no data are propagated

Request for writing 108 words 12 words of data provided

324 cycles Still not completed



Another example of speculative bus access
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Xilinx Central Direct Memory Access (CDMA) 

Direct Memory Access between a source buffer and 
a destination buffer

Created a hardware design to monitor the CDMA execution



CDMA execution hardware track
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The write request is issued before receiving the data to be written

Stall on write depends on the delay for receiving the read data

The shared write bus is booked (stalled) and cannot be used by other controllers



The impact 

Average performance 

Lower than expected


Waste cycles on data channel
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Safety 

Create circular dependencies among controllers


Broken isolation among controllers

Security  

Endanger the availability of shared resources


Exploitable for denial-of-service attacks of shared resources



Test on a realistic mixed-critical scenario
Target platform: Xilinx Ultrascale+ MPSoC
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Inspired by common functionalities required in 
modern autonomous vehicles 

High-critical: 

Deep learning hardware acceleration (CHaiDNN)


Critical sensor/actuation (real-time constraints)


Low-critical: 

Generic data mover (possibly injecting stalls)

Xilinx ZCU102 (Ultrascale+ MPSoC)



The CHaiDNN hardware accelerator
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CHaiDNN 

hardware accelerator

Processing System 

(DRAM memory)

Convolutional 

accelerator



The mixed-critical architecture
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Critical 

accelerator

Malicious/

misbehaving 


(Injected fault)

CHaiDNN

accelerator



Nominal behaviour
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CHaiDNN 

hardware accelerator

Critical accelerator

 not 

triggered
HA2

PS: Xilinx CHaiDNN stock Petalinux 

FPGA: mixed-critical design (CHaiDNN 
+ critical module + misbehaving)

Accelerators leveraged by SW-tasks 
running on Linux


Requirements:  


CHaiDNN ( ): minimum FPS                                                              
Critical module ( ): execute before 
deadline

SWDNN

SWRT

Good execution

Malicious/

misbehaving 


(not triggered)



Injecting AXI stalls
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CHaiDNN 

hardware accelerator

Critical accelerator

 inject stallsHA2

SW-task running in PS requests a data 
movement from HA2

The stall introduced by  denies 
memory access from the CHaiDNN and 

the critical HAs

HA2

Broken execution

Malicious/

misbehaving 


injecting stalls

U
nb

ou
nd

ed

Ze
ro

Any timing performance requirement is 
broken a-priori



Summarizing criticalities
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1. The protocol is not broken! May be difficult to detect during verification


2. No default recovery mechanisms provided - AXI transactions cannot be 
aborted 


3. A misbehaving module can directly influence the execution of others

1. The protocol is not broken! Can be difficult to detect in a superficial 
functional verification


2. No default recovery mechanisms provided - AXI transactions cannot be 
aborted 


3. No maximum time for stall defined - can be unbounded


4. Circular dependencies among modules - isolation broken



Summarizing - Lesson learned

Proposed solution and more experimental results later in the presentation

Leaving the controllers the freedom of delaying their data provisioning can affect the 
availability of the shared resources


…this can be exploited to introduce a denial-of-service of shared resources!
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Proposed solutions



Solving unfair bandwidth distribution
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Need a solution to equalize the structure of the 
transactions issued by the HAs 


Cannot just stick a constant to burst length signal

Source of the issue  

Data structure of transactions is left to be decided 
by the controller itself


This can even change dynamically during 
execution



The AXI burst equalizer (ABE)
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Enforce a fair per-manager granularity on data

Essential module to be placed between 
controllers and the interconnect  

Enforce a nominal bus configuration of the HAs


Makes transactions homogenous


AXI compliant - transparent


The interconnect arbitrates homogenous 
transactions



The AXI burst equalizer in action
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The AXI burst equalizer in action
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Associated bandwidth is fair, predictable, and independent of the structure of 
the transactions

Interfering

Interfering

Device under 

test



Preventing denial of service of shared resources

• Stall budget + recovery features

50

The solution should be able to: 

1) Recognize when a stall is endangering the system execution


2) Restore a safe condition of the bus - guarantee access from the other HAs

Source of the issue: controllers are trusted to complete (rapidly) their initiated 
write transactions and release the bus



How do we know when a stall is dangerous?

• Stall budget + recovery features
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Stalls may be introduced by managers during normal execution


1. When does a stall become a threat to the system execution?

a) Defined the model for the HAs, interconnect, 
and peripherals


b) Propose a worst-case response time analysis 
for the HAs


c) Find the maximum acceptable time for stalling 
the bus (correlated to the slack)


Full mathematical analysis in the paper



The AXI Stall Monitor (ASM)

• Stall budget + recovery features
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Monitor the HAs and intervene when system 
schedulability is endangered


Configured with a stall budget found with the 
worst-case analysis


2. How to take back control of the bus when stalled?

Takes back the control of the bus completing the pending stalled transactions 
when the system execution (schedulability) is endangered 

Leave the other controllers access to the shared bus



The AXI Stall Monitor in action

• Stall budget + recovery features
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The AXI Stall Monitor in action

• Stall budget + recovery features
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Limitations of ASM
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Limitations 

Need to fully know the bus workload 
(periodic)

Need to apply a worst-case analysis


A great solution for real-time systems

Developed a more versatile and elegant solution 

Paper currently under peer review process - stay tuned!

CHaiDNN 

hardware accelerator

Critical accelerator

Malicious/

misbehaving 


injecting stalls

Example: 
ASM cannot be applied to mixed-critical scenarios (like the CHaiDNN one)



The criticality of the access control system
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Challenges 

The access control system deployed in commercial platforms may show limited 
functionalities


Access control systems are sadly known to be a common source of bugs/
weaknesses

The access control plays a crucial role in the 
security of a system 

Defines who (controllers) access what 
(peripherals)


Best approach: give minimum access to the 
controllers



Top 12 CWEs for 2021 - related to access control
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The AKER framework
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AKER is a framework for building safe and secure 
access control systems 

AKER is based on two pillars

The access control 
wrapper (ACW) 

Universal building block 
for AKER-based access 
control systems

AKER security 
verification 

Extensive property-based 
addressing the MITRE 
CWEs



Concluding remarks
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Guidelines for secure integration of controllers
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Meza, A., Restuccia, F, Kastner, R, and Oberg, J (2022, July). Safety Verification of Third-Party Hardware Modules via 
Information Flow Tracking. In 2022 Real-time And intelliGent Edge computing workshop @ Design and Automation 
Conference (DAC). To appear.

Proposal 

Leveraged Information Flow Tracking (IFT) to verify the 
safety of bus interactions among on-chip hardware 
resources. 


Tortuga Logic Radix-S IFT tool

Perform an extensive safety/security verification of 
the bus interaction of the controllers 
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Enforce fair and 
predictable bus access

Prevent denial of service 
of shared resources

Safe and secure access 
control system

The AXI HyperConnect

+
new solution



The AXI HyperConnect +  
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Research interconnect enforcing 
secure and safe bus interactions 

For standalone use  
or 

Integrated with CLARE - Hypervisor 
extension

CLARE is a hypervisor-centric software 
stack for secure, safe, and time-predictable 

Cyber-Physical Systems


https://accelerat.eu/



AXI HyperConnect features
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Next steps on the HyperConnect: 

Extensive safety/security verification


Automatic firmware management and configuration



Integration example HyperConnect - mixed-critical application
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Critical 

accelerator

Malicious/

misbehaving 


(Injecting stalls)

CHaiDNN

accelerator

AXI

HyperConnect

Zynq PS



Injecting AXI stalls - previous example
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CHaiDNN 

hardware accelerator

Critical accelerator

 inject stallsHA2 Broken execution

Malicious/

misbehaving 


injecting stalls

U
nb

ou
nd

ed

Ze
ro

AXI interconnect

 inject stallsHA2 System is kept operational

AXI HyperConnect

AXI interconnect AXI HyperConnect
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