Interacting with
*OS Hardware from User Space

2?7

Jiska Classen
Secure Mobile Networking Lab - SEEMOO
Technical University of Darmstadt, Germany

=T\ ik
67 UNIVERSITAT :

s 4 e National Research Center
; DARMSTADT ° for Applied Cybersecurity

B TECHNISCHE . ATHENE J'

i\ emergenCITY

As a...
hardware hacker

I want to...
buy iPhones

that...
an break the most recent chips

Wait, what?

« Official development kits often lag behind.
o Bluetooth/Wi-Fi kits by Cypress (aka Broadcom) are stuck on a firmware state
around 2016.
o Ultra Wideband kits by Decawave added features like direction measurement
much later than it was available in iPhones.

o Official development kits miss proprietary features. p
o Intel baseband chips use a proprietary, .
undocumented interface on Apple devices.) Stno

Bluetooth Chip Build Dates
iPhone 11: Oct 25 2018

iPhone 12: Oct 29 2019

Samsung Galaxy S21: April 13 2018
(S21+ Ultra probably got an update)

Hardware in an iPhone

o Bluetooth+Wi-Fi combo chip by Broadcom
 Baseband chip by Intel or Qualcomm

o U1 chip (in-house, since iPhone 11)

« NFC chip

e ...and that's just the wireless chips!

If I deal with iPhones, jailbreaks, etc.
I can access quite a lot of hardware &

Goals

Find chip interfaces.
Find protocol handlers.

Decode proprietary protocols.

Inject custom payloads.
?2??

Why from user space?!

« The daemon that interacts with the chip already holds a correct state.
o Chip initialization/activation on startup and when leaving flight mode.
o Complex protocol internals are implemented here.

« The daemon’s protocol implementation will typically:
parse crash logs,

acknowledge packets,

forward information to other daemons,

CommCenter

O O O O

User Space

o« FAIDA only supports user space. Lo o

Hardware

o=

But you said *0S??!

XNU kernel is very similar on MacQOS, i0OS, and the iOS
derivatives like audioOS, watchQOS, tvOs, ...

User space is also mostly similar.

Everything in this talk should work on iOS and MacOS.
Slightly inspired by the "*0OS Internals” book series,
definitely a good read if you want to dig deeper!

X0 S
' Internals
ﬁ Volume I

User Mode

10S Debugging
Basics

Profiles and Logs

These profiles and logs are for developers to use in order to provide information
about bugs to Apple. Get details on providing logs, reproducible test cases, and

other information that will help us investigate and diagnose reported issues.

All i0S macOS tvOS watchOS Other

3rd Party Apps for i0S

3rd Party Products for macOSs
802.1X Logging for macOS
Accounts/AuthKit for i0S
Accounts/AuthKit for macOS

Accounts/AuthKit for tvOS

Search by name

iy b W Y K o

Instructions

Instructions

Instructions

Instructions

Instructions

Instructions

https://developer.apple.com/bug-reporting/profiles-and-logs/

D Profile
D Profile

D Profile

https://developer.apple.com/bug-reporting/profiles-and-logs/

When there is no profile...

iPhone# vim /Library/Preferences/Logging/com.apple.system.logging.plist

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST
1.0//EN"
"http://www.apple.com/DTDs/PropertylList-1.0.dtd">
<plist version="1.0">

<dict>

<key>Enable-Private-Data</key>
<true/>

</dict>

</plist>

iPhone# killall -9 logd

https://agithub.com/EthanArbuckle/unredact-private-os logs

https://github.com/EthanArbuckle/unredact-private-os_logs

Demo: idevicesyslog

idevicesyslog -p CommCenter

CommCenter()[4111] <Notice>: ari: (forwardIndication:123) Indication(©x25820000)
for client(IndicationReregistrationActor) Type(GCD) size(110) dispq(AriHostIPC:0x101d712d0)

CommCenter()[4111] <Notice>: ind: Bin=['DE Co0 7E AB ... 00 00"]

CommCenter()[4111] <Notice>: ari: (forwardIndication:123) Indication(©x25820000)

for client(IndicationReregistrationActor) Type(GCD) size(110) dispq(AriHostIPC:0x101d712d0)
CommCenter()[4111] <Notice>: ind: Bin=['DE C0 7E AB ... 00"
CommCenter[4111] <Notice>: #I CCXpcServer(1808[mediaserverd]: 'Virtual Audio'/0x103616680)
request: kSetActiveAudioSystemConfiguration.

Shared Libraries

Programs can use shared libraries.

3rd-party usage requires function name exports.

DYLD shared cache is automatically extracted from an iPhone
after connecting it to Xcode:

~/Library/Developer/Xcode/i0S DeviceSupport/

Lower levels of hardware access are often defined in shared libraries.

and define almost every field of the Apple
Remote Invocation (ARI) protocol for Intel baseband chips, Wireshark dissector to
be released soon!

71
A RISTOTELES

Dissector by Tobias Kroll

7] Functions

Function name =
_|ORegistryEntryGetRegistryEntrylD
'F]__l0ServiceAuthorize_block_invoke
_lOServiceOpenAsFileDescriptor
___lOServiceOpenAsFileDescriptor_block_invoke
__lOServiceGetAuthorizationID
__lOServiceSetAuthorizationID
_lOConnectAddRef
_lOConnectRelease
_lOConnectGetService
_lOConnectSetNotificationPort
_lOConnectMapMemory
_lOConnectMapMemory64
_lOConnectUnmapMemory
_lOConnectUnmapMemory64
_lOConnectAddClient
_lOConnectCallMethod
_lOConnectCallAsyncMethod
_lOConnectCallStructMethod
_lOConnectCallAsyncStructMethod
_lOConnectCallScalarMethod
_lOConnectCallAsyncScalarMethod
_lOConnectTrap0

_lOConnectTrapl

_lOConnectTrap2

_lOConnectTrap3

_lOConnectTrap4

_lOConnectTrap5

INCAannartfTranA

n@\m

\‘

T T [S T T [Y R TR T

I

[[YT [[R [(R Ry IR

IDA View-A X Pseudocode-A X & Hex View-1 X [Al Structures X
1
2 kern return t cdecl IOConnectCallMethod(
3 mach port t connection,
4 uint32 t selector,
5 const uint64 t *input,
6 uint32 t inputCnt,
7 const void *inputStruct,
8 size t inputStructCnt,
9 uint64 t *output,
10 uint32 t *outputCnt,
1 6 | void *outputStruct,
12 size t *outputStructCnt)
13
14| size t v12; // x10
15| const void *v13; // x11 I’I
16| bool v14; // cc
17| const void *v15; // x6 0'4 "@’ MO 'DA Seo
18| size t v16; // x7
19 void *v17; // x20
20| kern_return_t result; // w0
21| size t v19; // x8
22| void *v20; // x10
23| unsigned int v21; // [xsp+34h] [xbp-2Ch] BYREF
24| int64 v22; // [xsp+38h] [xbp-28h] BYREF
25| size t v23; // [xsp+40h] [xbp-20h] BYREF
26| unsigned int v24; // [xsp+4Ch] [xbp-14h] BYREF
27
28| v12 = inputStructCnt;
29| v13 = inputStruct;
30| v24 = 0;

Symbols/System/Library/Frameworks/IOKit.framework/Versions/A/IOKit

10S Debugserver

o Part of the developer tools.
« Copy it to /usr/bin, add more entitlements with 1did, attach to any process.
o Still not that intuitive to use, 11db is so-so, and even in combination with IDA Pro...

\\7>*/ 7

)
\

Not beginner-friendly, so we won't use it here...

Sur

FHIDA Basics

Emd\ation lonplemerkin

@ Scecliciod

— 1/
——

=

F'\f Wiy (e
ModGedion

CIOEAEAD
(AL)

BV Seldgus- deued
Pr CA'Oco\

Revetse Bunerrin
o easing ==

FAIDA

Running FAIDA on iOS

JavaScript injected into iOS target process Python script running on Linux/macOS - \

// send a message to the Python script 5 on _message(message, data):
send(“some message”); ; - # handle message from script

JSON serialization &
deserialization,
USB

// this can be called by the Python script
rpc.exports = {

script = frida_session.create_script(
script.on(“message”, on_message)

callme: function() { script.load()
// do something
}s # call function in script
}s script.exports.callme()

frida-trace

mac# frida-trace -U CommCenter --decorate -i 'objc msg*'

e The local frida and frida-trace command etc. run Python on the local machine
and call something on the iPhone.

https://frida.re/docs/frida-trace/

https://frida.re/docs/frida-trace/

Layer 8

mac# frida -U somedaemon --no-pause -1 somescript.js

You can open somescript.js in parallel and every time you save it, it will be
executed again.

 The output console can also be used for input, so you can try single lines of code or
call functions without reloading the somescript. js.

e You can even use the Chrome developer tools along with your scripts.

https://www.youtube.com/watch?v=PHalF3tT130 Frida Scripting Simpsons by Tavis Ormandy

https://www.youtube.com/watch?v=PHa1F3tT130

Analyzing Function Arguments

var _IOConnectCallMethod addr = Module.getExportByName(' IOKit",

"I0ConnectCallMethod"');

Interceptor.attach(_IOConnectCallMethod addr, {
onEnter: function(args) {

var connection = args[0];

o The interceptor can change values onEnter and onLeave of a function.
o Function arguments are mapped to args[0], args[1], ...
(architecture-independent).

« Registers can also be accessed directly, like this.context.xo
(architecture-dependent).

https://frida.re/docs/javascript-api/

https://frida.re/docs/javascript-api/

Backtrace

console.log('Called from:\n' +

Thread.backtrace(this.context, Backtracer.ACCURATE)
.map(DebugSymbol.fromAddress).join('\n") + ‘\n');

o Backtrace for the current thread.
« Even adds symbols if known via shared libraries.

https://frida.re/docs/javascript-api/

https://frida.re/docs/javascript-api/

Stalker

foo = a + 10
if (foo > 23)

foo += 5;
print(“increased fo00”);

Rewrite code during runtime to trace its execution.
Supports different granularities, such as functions, or even basic blocks.

Can be integrated for coverage-guided fuzzing.
As of now, it only follows direct calls, e.g., no thread switches.

https://frida.re/docs/stalker/

https://frida.re/docs/stalker/

FAIDA ¢ i0S Debugserver

I really shouldn’t tell you this!
... but most of the time, this actually works without crashing the target.

Data, Data, Data

Data??

Attach IDA Pro to the iOS Debugserver, pause execution a few times while sending lots
of data, set a few breakpoints, eventually locate functions that process data ...

°\° 1001111190
A\
oo "

A
7, .’
00 Py
V4
o

/

Data!

Process A Process B
GCD GCp
Thread GCp | Thread ——,
Al \ Thread XPC Thread B2 Thread
A2 > B1 B3
IOKit IOKit
User Space
Kernel Space 4 Y
SomeUserClient AnotherUserClient

Hardware l l

Device A Device B

Grand Central
Dispatch

Grand Central Dispatch

Apple’s implementation of threads.

libdispatch is open-source, makes writing hooks easier.
Thread switches often happen for data processing...

... we want to find data handlers, this will help a lot!

Process A

Thread GCp
Al \ Thread

A2

Documentation > Dispatch Queue >

Dispatch >

dispatch_async

dispatch_async

Submits a block for asynchronous execution on a dispatch queue and returns
immediately.

Declaration

void dispatch_async(dispatch_queue_t queue, dispatch_block_t block);

Hook into this with FAIDA, print the queue

Parameters name and a backtrace!

queue
The queue on which to submit the block. The system retains the queue until the block
runs to completion. This parameter cannot be NULL.

block
The block to submit to the target dispatch queue. This function performs Block_copy
and Block_release on behalf of callers. This parameter cannot be NULL.

https://qgithub.com/seemoo-lab/frida-scripts/blob/main/scripts/libdispatch.js
https://developer.apple.com/documentation/dispatch/1453057-dispatch _async

Language:

Objective-C API Changes:

Availability

i0S 4.0+

macOS 10.6+

Mac Catalyst 13.0+
tvOS 9.0+

watchOS 2.0+

Framework

Dispatch

On This Page
Declaration ©
Parameters ©
Discussion &)
See Also ©

https://github.com/seemoo-lab/frida-scripts/blob/main/scripts/libdispatch.js
https://developer.apple.com/documentation/dispatch/1453057-dispatch_async

CommCenter

libARIServer.dylib

ARIHostRt: :InboundMsgCB

User Space

Kernel Space + Hardware

Using libdispatch.js will help identifying functions like ARIHostRt: : InboundMsgCB.

Demo: libdispatch.js

frida -U CommCenter --no-pause -1 libdispatch.js

dispatch_async

Calling queue: AriHostRt

Callback function: ©xd47c1581e85b6dc8 linvocation function for block in
AriHostRt: :InboundMsgCB(unsigned char*, unsigned long)

Backtrace:

Ox1e85b267c 1ibARIServer.dylib!AriHostRt::InboundMsgCB(unsigned char*, unsigned long)
Oxl1le85aa4c0 libARIServer.dylib!AriFramer::fmrMsgCb(unsigned char*, unsigned long)
Oxl1le85aal0c libARIServer.dylib!AriFramer::IpcDataCb(unsigned char*, unsigned long, void*)
Ox1a2316fdo libdispatch.dylib! dispatch call block and release

Ox1a2318ac8 libdispatch.dylib! dispatch client callout

Ox1a231fcO8 libdispatch.dylib! dispatch lane serial drain

©x1a2320734 libdispatch.dylib! dispatch lane_invoke

Ox1a232a528 libdispatch.dylib! dispatch _workloop worker thread

Ox1eab60b908 libsystem pthread.dylib! pthread wqgthread

Demo: libdispatch.js

frida -U bluetoothd --no-pause -1 libdispatch.js

dispatch_async

Calling queue: com.apple.AppleConvergedIPC.pci client 2

Callback function: Oxd@779e0@lec456e80 linvocation function for block in
pci::transport::th::readAsync()

Backtrace:

Oxlec456d24 AppleConvergedTransport.dylibl!invocation function for block in
pci::transport::th::readAsync()

Oxlec45940c AppleConvergedTransport.dylib!pci::transport::bind::~bind()

Oxlec459ec® AppleConvergedTransport.dylib!pci::transport::task::complete(int, unsigned int, unsigned
int)

Oxlec4507d4 AppleConvergedTransport.dylib!invocation function for block in
pci::transport::bh::generateCallback(std:: 1::shared ptr<pci::transport::task>, char const*, bool)
Oxlec4513d8 AppleConvergedTransport.dylib!pci::transport::bh::ioCompletion(void*, int, void*)
Oxlad20cl34 ITODispatchCalloutFromCFMessage

Oxlad20c214 | IODispatchCalloutWithDispatch

Ox1a2333c18 libdispatch.dylibl!dispatch mig server

Oxl1a2318ac8 libdispatch.dylib! dispatch _client callout

XPC

Cross-Process Commmunication

XPC
Process A > Process B

Daemons interact a lot with each other.

Also used between applications and daemons.

Not necessarily wireless packets, but at least important state information is visible
here.

Hardware test functions might be implemented in XPC.

Permissions are managed by launchd, which starts processes and bootstraps the
underlying Mach ports for XPC.

https://github.com/evilpenguin/XPCSniffer
https://github.com/hot3eed/xpcspy

https://github.com/evilpenguin/XPCSniffer
https://github.com/hot3eed/xpcspy

Demo: xpcspy

xpcspy -U -n bluetoothd

 Looooooots of data!
« FAIDA-based implementation crashes on XPC-heavy targets like CommCenter.

gpsd 1/0/0
mediaserverd 2/0/0
2/0/1 misd 4/0/1

suggestd 1/0/0

WirelessRadioManagerd 1/1/1

CommCenter
3/2/0 | locationd | 5/1/0 9/3/0 42/14/4
abmlite 1/0/0
Qualcomm Intel
Libraries Libraries
1/0/0 | sharingd

awdd 1/0/0 photoanalysisd 2/0/0

1/1/0 abm-helper

Individual crashes found:

1 1/0/0
imagent 1/0/ Total / Replayable / Fixed in iOS 14.3

Example: SMS Simulator

Remote Code Execution via SMS has a history since iOS 2.

This was revisited for iOS 11.

The CommCenter XPC interface com.apple.commcenter.xpc exposes test functions.
SMS can be simulated using this (see kSimulateSmsReceived).

Simulated SMS go a slightly different path in CommCenter than real SMS.
SMS parsing has so many debug prints, it is probably the most tested functionality.

https://github.com/googleprojectzero/i0S-messaging-tools/tree/master/SmsSimulator

https://github.com/googleprojectzero/iOS-messaging-tools/tree/master/SmsSimulator

IOKit + Mach

IOKit

Process A
IOKit
o IOKit drivers export functions
from the kernel. User Space
. Functlc_)n parameter typ_e_s are Kernel Space v
predefined and are verified.
o A process can call these functions SomeUserClient sMethods
via a UserClient.
Hardware l
Device A

https://github.com/robre/frida-scripts/blob/master/iotracy.js
https://github.com/unixb0y/IOKitLibAnalysis
“Strolling into Ring-0 via I/O Kit Drivers” talk by @patrickwardle

https://github.com/robre/frida-scripts/blob/master/iotracy.js
https://github.com/unixb0y/IOKitLibAnalysis

Demo: I0Kit.js

frida -U nearbyd --no-pause -1 IOKit.js

mach_task self: 259

port: 18959 | desc: AppleSPURoseDriverUserClient (0x100027287)
port: 19215 | desc: AppleKeyStoreUserClient(0x100027286)
port: 19475 | desc: AppleKeyStoreUserClient(0x100027289)
port: 42755 | desc: AppleSPUUserClient(0x100027288)

done creating mappings.

{~-~} I0ConnectCallMethod:

> mach_port_t connection: 0xa703 => AppleSPUUserClient(0x100027288)

> uint32 t selector: 0x3

> const uinte4 t *input:
o 1 2 3 4 5 6 7 8 9 A B C D E F 0©123456789ABCDEF

00000000 23 (
uint32_t inputCnt: ex1 (APCheckIn

const void *inputStruct: oxe

size t inputStructCnt: oxe

uinte4 _t *output: oxe

uint32_t *outputCnt: oxe

void *outputStruct: 0x16fdoe2f0
size t *outputStructCnt: ©x16fdoe2c8

AppleSPUUserClient: :extPerformCommandMethod

Mach Messages

XPC and IOKit are internally just implemented as Mach messages.

There might as well just be plain Mach messages communicating with the kernel
etc.

We can double-check what we are missing by hooking into them directly.

... better only use this for debugging purposes!

https://qgithub.com/seemoo-lab/frida-scripts/blob/main/scripts/mach msg.js

https://github.com/seemoo-lab/frida-scripts/blob/main/scripts/mach_msg.js

Conclusion

Find chip interfaces: I0Kit, Mach
Find protocol handlers: GCD
Decode proprietary protocols: Shared libraries, debug logs.

Inject custom payloads: Call functions with Frida or XPC.

O https://github.com/seemoo-lab
y Twitter: @naehrdine

DL jiska@bluetooth.lol

Interacting with
*OS Hardware from User Space

