
Interacting with
*OS Hardware from User Space

Jiska Classen
Secure Mobile Networking Lab - SEEMOO
Technical University of Darmstadt, Germany

???

As a…
hardware hacker

I want to…
buy iPhones

So that…
I can break the most recent chips

Wait, what?

● Official development kits often lag behind.
○ Bluetooth/Wi-Fi kits by Cypress (aka Broadcom) are stuck on a firmware state

around 2016.
○ Ultra Wideband kits by Decawave added features like direction measurement

much later than it was available in iPhones.

● Official development kits miss proprietary features.
○ Intel baseband chips use a proprietary,

undocumented interface on Apple devices.

Bluetooth Chip Build Dates
iPhone 11: Oct 25 2018
iPhone 12: Oct 29 2019
Samsung Galaxy S21: April 13 2018
(S21+ Ultra probably got an update)

Hardware in an iPhone

● Bluetooth+Wi-Fi combo chip by Broadcom

● Baseband chip by Intel or Qualcomm

● U1 chip (in-house, since iPhone 11)

● NFC chip

● … and that’s just the wireless chips!

If I deal with iPhones, jailbreaks, etc.
I can access quite a lot of hardware 🎉

Goals

1. Find chip interfaces.

2. Find protocol handlers.

3. Decode proprietary protocols.

4. Inject custom payloads.
???

Why from user space?!

● The daemon that interacts with the chip already holds a correct state.
○ Chip initialization/activation on startup and when leaving flight mode.
○ Complex protocol internals are implemented here.

● The daemon’s protocol implementation will typically:
○ parse crash logs,
○ acknowledge packets,
○ forward information to other daemons,
○ …

● FЯIDA only supports user space.

CommCenter

User Space

Kernel Space

Hardware

But you said *OS??!

● XNU kernel is very similar on MacOS, iOS, and the iOS
derivatives like audioOS, watchOS, tvOS, …

● User space is also mostly similar.
● Everything in this talk should work on iOS and MacOS.
● Slightly inspired by the “*OS Internals” book series,

definitely a good read if you want to dig deeper!

iOS Debugging
Basics

https://developer.apple.com/bug-reporting/profiles-and-logs/

https://developer.apple.com/bug-reporting/profiles-and-logs/

When there is no profile…

iPhone# vim /Library/Preferences/Logging/com.apple.system.logging.plist

iPhone# killall -9 logd

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST
1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Enable-Private-Data</key>
 <true/>
</dict>
</plist>

https://github.com/EthanArbuckle/unredact-private-os_logs

https://github.com/EthanArbuckle/unredact-private-os_logs

Demo: idevicesyslog

idevicesyslog -p CommCenter

CommCenter(libARI.dylib)[4111] <Notice>: ari: (forwardIndication:123) Indication(0x25820000)
for client(IndicationReregistrationActor) Type(GCD) size(110) dispq(AriHostIPC:0x101d712d0)

CommCenter(libARI.dylib)[4111] <Notice>: ind: Bin=['DE C0 7E AB … 00 00']
CommCenter(libARI.dylib)[4111] <Notice>: ari: (forwardIndication:123) Indication(0x25820000)

for client(IndicationReregistrationActor) Type(GCD) size(110) dispq(AriHostIPC:0x101d712d0)
CommCenter(libARI.dylib)[4111] <Notice>: ind: Bin=['DE C0 7E AB … 00']
CommCenter[4111] <Notice>: #I CCXpcServer(1808[mediaserverd]:'Virtual Audio'/0x103616680)

request: kSetActiveAudioSystemConfiguration.

Shared Libraries

● Programs can use shared libraries.
● 3rd-party usage requires function name exports.
● DYLD shared cache is automatically extracted from an iPhone

after connecting it to Xcode:
~/Library/Developer/Xcode/iOS DeviceSupport/

● Lower levels of hardware access are often defined in shared libraries.
● libARI.dylib and libARIServer.dylib define almost every field of the Apple

Remote Invocation (ARI) protocol for Intel baseband chips, Wireshark dissector to
be released soon!

Dissector by Tobias Kröll

Symbols/System/Library/Frameworks/IOKit.framework/Versions/A/IOKit

iOS Debugserver

● Part of the developer tools.
● Copy it to /usr/bin, add more entitlements with ldid, attach to any process.
● Still not that intuitive to use, lldb is so-so, and even in combination with IDA Pro…

Not beginner-friendly, so we won’t use it here…

FЯIDA Basics

Running FЯIDA on iOS

def on_message(message, data):
 # handle message from script

script = frida_session.create_script(“...”)
script.on(“message”, on_message)
script.load()

call function in script
script.exports.callme()

// send a message to the Python script
send(“some message”);

// this can be called by the Python script
rpc.exports = {
 callme: function() {
 // do something
 };
};

Python script running on Linux/macOSJavaScript injected into iOS target process

JSON serialization &
deserialization,

USB

frida-trace

https://frida.re/docs/frida-trace/

mac# frida-trace -U CommCenter --decorate -i 'objc_msg*'

● The local frida and frida-trace command etc. run Python on the local machine
and call something on the iPhone.

https://frida.re/docs/frida-trace/

Layer 8

● You can open somescript.js in parallel and every time you save it, it will be
executed again.

● The output console can also be used for input, so you can try single lines of code or
call functions without reloading the somescript.js.

● You can even use the Chrome developer tools along with your scripts.

mac# frida -U somedaemon --no-pause -l somescript.js

https://www.youtube.com/watch?v=PHa1F3tT130 Frida Scripting Simpsons by Tavis Ormandy

https://www.youtube.com/watch?v=PHa1F3tT130

Analyzing Function Arguments

● The interceptor can change values onEnter and onLeave of a function.
● Function arguments are mapped to args[0], args[1], …

(architecture-independent).
● Registers can also be accessed directly, like this.context.x0

(architecture-dependent).

https://frida.re/docs/javascript-api/

var _IOConnectCallMethod_addr = Module.getExportByName('IOKit', 'IOConnectCallMethod');

Interceptor.attach(_IOConnectCallMethod_addr, {
onEnter: function(args) {

var connection = args[0];
// …

}
});

https://frida.re/docs/javascript-api/

Backtrace

● Backtrace for the current thread.
● Even adds symbols if known via shared libraries.

console.log('Called from:\n' +
 Thread.backtrace(this.context, Backtracer.ACCURATE)

 .map(DebugSymbol.fromAddress).join('\n') + '\n');

https://frida.re/docs/javascript-api/

https://frida.re/docs/javascript-api/

Stalker

● Rewrite code during runtime to trace its execution.
● Supports different granularities, such as functions, or even basic blocks.
● Can be integrated for coverage-guided fuzzing.
● As of now, it only follows direct calls, e.g., no thread switches.

https://frida.re/docs/stalker/

foo = a + 10
if (foo > 23)

foo += 5;
print(“increased foo”);

…

https://frida.re/docs/stalker/

FЯIDA 💕 iOS Debugserver

I really shouldn’t tell you this!
… but most of the time, this actually works without crashing the target.

Data, Data, Data

Data??

Attach IDA Pro to the iOS Debugserver, pause execution a few times while sending lots
of data, set a few breakpoints, eventually locate functions that process data …

Data!
Process A

IOKit

Process B

IOKit

Thread
A1 XPCThread

A2

GCD
Thread

B1

Thread
B2 Thread

B3

GCD GCD

Hardware

Device A Device B

Kernel Space

User Space

SomeUserClient AnotherUserClient

Grand Central
Dispatch

Grand Central Dispatch

● Apple’s implementation of threads.
● libdispatch is open-source, makes writing hooks easier.
● Thread switches often happen for data processing…
● … we want to find data handlers, this will help a lot!

Process A

Thread
A1 Thread

A2

GCD

https://github.com/seemoo-lab/frida-scripts/blob/main/scripts/libdispatch.js
https://developer.apple.com/documentation/dispatch/1453057-dispatch_async

Hook into this with FЯIDA, print the queue
name and a backtrace!

https://github.com/seemoo-lab/frida-scripts/blob/main/scripts/libdispatch.js
https://developer.apple.com/documentation/dispatch/1453057-dispatch_async

CommCenter

libARIServer.dylib

...

ARIHostRt::InboundMsgCB

ARI

Using libdispatch.js will help identifying functions like ARIHostRt::InboundMsgCB.

Kernel Space + Hardware

User Space

Demo: libdispatch.js

frida -U CommCenter --no-pause -l libdispatch.js

dispatch_async
Calling queue: AriHostRt
Callback function: 0xd47c1581e85b6dc8 libARIServer.dylib!invocation function for block in
AriHostRt::InboundMsgCB(unsigned char*, unsigned long)
Backtrace:
0x1e85b267c libARIServer.dylib!AriHostRt::InboundMsgCB(unsigned char*, unsigned long)
0x1e85aa4c0 libARIServer.dylib!AriFramer::fmrMsgCb(unsigned char*, unsigned long)
0x1e85aa10c libARIServer.dylib!AriFramer::IpcDataCb(unsigned char*, unsigned long, void*)
0x1a2316fd0 libdispatch.dylib!_dispatch_call_block_and_release
0x1a2318ac8 libdispatch.dylib!_dispatch_client_callout
0x1a231fc08 libdispatch.dylib!_dispatch_lane_serial_drain
0x1a2320734 libdispatch.dylib!_dispatch_lane_invoke
0x1a232a528 libdispatch.dylib!_dispatch_workloop_worker_thread
0x1ea60b908 libsystem_pthread.dylib!_pthread_wqthread

Demo: libdispatch.js

frida -U bluetoothd --no-pause -l libdispatch.js

dispatch_async
Calling queue: com.apple.AppleConvergedIPC.pci_client_2
Callback function: 0xd0779e01ec456e80 AppleConvergedTransport.dylib!invocation function for block in
pci::transport::th::readAsync()
Backtrace:
0x1ec456d24 AppleConvergedTransport.dylib!invocation function for block in
pci::transport::th::readAsync()
0x1ec45940c AppleConvergedTransport.dylib!pci::transport::bind::~bind()
0x1ec459ec0 AppleConvergedTransport.dylib!pci::transport::task::complete(int, unsigned int, unsigned
int)
0x1ec4507d4 AppleConvergedTransport.dylib!invocation function for block in
pci::transport::bh::generateCallback(std::__1::shared_ptr<pci::transport::task>, char const*, bool)
0x1ec4513d8 AppleConvergedTransport.dylib!pci::transport::bh::ioCompletion(void*, int, void*)
0x1ad20c134 IOKit!IODispatchCalloutFromCFMessage
0x1ad20c214 IOKit!_IODispatchCalloutWithDispatch
0x1a2333c18 libdispatch.dylib!dispatch_mig_server
0x1a2318ac8 libdispatch.dylib!_dispatch_client_callout
...

XPC

Cross-Process Communication

● Daemons interact a lot with each other.
● Also used between applications and daemons.
● Not necessarily wireless packets, but at least important state information is visible

here.
● Hardware test functions might be implemented in XPC.
● Permissions are managed by launchd, which starts processes and bootstraps the

underlying Mach ports for XPC.

Process A Process B
XPC

https://github.com/evilpenguin/XPCSniffer
https://github.com/hot3eed/xpcspy

https://github.com/evilpenguin/XPCSniffer
https://github.com/hot3eed/xpcspy

Demo: xpcspy

xpcspy -U -n bluetoothd

● Looooooots of data!
● FЯIDA-based implementation crashes on XPC-heavy targets like CommCenter.

CommCenter

Intel
Libraries

Qualcomm
Libraries

Individual crashes found:
Total / Replayable / Fixed in iOS 14.3

42/14/4

WirelessRadioManagerd 1/1/1

photoanalysisd 2/0/0

mediaserverd 2/0/0

awdd 1/0/0

gpsd 1/0/0

imagent 1/0/0

suggestd 1/0/0

abmlite 1/0/0

9/3/0

misd 4/0/12/0/1

locationd 5/1/03/2/0

sharingd1/0/0

abm-helper1/1/0

Example: SMS Simulator

● Remote Code Execution via SMS has a history since iOS 2.
● This was revisited for iOS 11.
● The CommCenter XPC interface com.apple.commcenter.xpc exposes test functions.
● SMS can be simulated using this (see kSimulateSmsReceived).

● Simulated SMS go a slightly different path in CommCenter than real SMS.
● SMS parsing has so many debug prints, it is probably the most tested functionality.

https://github.com/googleprojectzero/iOS-messaging-tools/tree/master/SmsSimulator

https://github.com/googleprojectzero/iOS-messaging-tools/tree/master/SmsSimulator

IOKit + Mach

IOKit

● IOKit drivers export functions
from the kernel.

● Function parameter types are
predefined and are verified.

● A process can call these functions
via a UserClient.

Process A

IOKit

Hardware

Device A

Kernel Space

User Space

SomeUserClient sMethods

https://github.com/robre/frida-scripts/blob/master/iotracy.js
https://github.com/unixb0y/IOKitLibAnalysis

“Strolling into Ring-0 via I/O Kit Drivers” talk by @patrickwardle

https://github.com/robre/frida-scripts/blob/master/iotracy.js
https://github.com/unixb0y/IOKitLibAnalysis

Demo: IOKit.js

frida -U nearbyd --no-pause -l IOKit.js

mach_task_self: 259
port: 18959 | desc: AppleSPURoseDriverUserClient(0x100027287)
port: 19215 | desc: AppleKeyStoreUserClient(0x100027286)
port: 19475 | desc: AppleKeyStoreUserClient(0x100027289)
port: 42755 | desc: AppleSPUUserClient(0x100027288)
done creating mappings.

{^-^} IOConnectCallMethod:
> mach_port_t connection: 0xa703 => AppleSPUUserClient(0x100027288)
> uint32_t selector: 0x3
> const uint64_t *input:
 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF
00000000 28 (
> uint32_t inputCnt: 0x1
> const void *inputStruct: 0x0
> size_t inputStructCnt: 0x0
> uint64_t *output: 0x0
> uint32_t *outputCnt: 0x0
> void *outputStruct: 0x16fd0e2f0
> size_t *outputStructCnt: 0x16fd0e2c8

AppleSPUUserClient::extPerformCommandMethod

(APCheckIn

Mach Messages

● XPC and IOKit are internally just implemented as Mach messages.
● There might as well just be plain Mach messages communicating with the kernel

etc.
● We can double-check what we are missing by hooking into them directly.
● … better only use this for debugging purposes!

https://github.com/seemoo-lab/frida-scripts/blob/main/scripts/mach_msg.js

https://github.com/seemoo-lab/frida-scripts/blob/main/scripts/mach_msg.js

Conclusion

1. Find chip interfaces: IOKit, Mach

2. Find protocol handlers: GCD

3. Decode proprietary protocols: Shared libraries, debug logs.

4. Inject custom payloads: Call functions with Frida or XPC.
???

Q&A

 https://github.com/seemoo-lab

 Twitter: @naehrdine

 jiska@bluetooth.lol

Interacting with
*OS Hardware from User Space

???

