Marcus f’ﬁ)‘/”g

Engineering

Static Analysis of C++
Virtual Tables (from GCC)

James Rowley, Marcus Engineering, LLC

Hardwear.io USA 2023
Marcus f%{)’\ .
Engineering wear 10

8/12/2023 vl.5 © 2023 Marcus Eng ineering, LLC

Step One — Get Set Up Marcus P03

* While I’'m introducing the workshop...

* Download Ghidra:
* https://ghidra-sre.org/

* Download the workshop files:
e https://github.com/pixelfelon/GCCVTSRE ghidraDemo

8/12/2023 vl.5 © 2023 Marcus Engineering, LLC 2

https://ghidra-sre.org/
https://github.com/pixelfelon/GCCVTSRE_ghidraDemo

Welcome! %ﬂfnuéem

* About a year ago, my team was working on a
software reverse engineering project.

* ARM/Linux embedded system.

* Trying to suss out how a certain digitally-tagged
item was being tracked.

*We got the firmware out of the control console,
and dug in in Ghidra...

Stuck on Indirection... %ﬂfnuéem

*Then we saw a lot of these jumps to computed
addresses: C++ virtual calls.

* Function calls, but we didn’t know where the
functions were.

*Tried to get C++-specific decompilation tools to
work, and just couldn’t.

* Looked into plugins for both Ghidra and IDA Pro.

Virtual vs. Direct Calls E’r']%ﬁfn“éeﬁ‘fé

* Direct e Virtual

SSub8

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 5

Better Try Something Else... E"nﬁ{fnuée’ﬁfé

*Believed that it was impractical to manually
analyze virtual calls and related mechanismes.

* Hence remaining focused on C++ tools.
* Or, doing live debugging to see the call stack.

* But after weeks of no progress...?

| pushed forward on manual analysis — turns out,
it’s actually very practical.

Marcus fo’v{%

WHAT WE’'RE DOING TODAY Engineering

8/12/2023 vl.5 © 2023 Marcus Engineering, LLC 7

Marcus fo’v{%

WHAT WE’'RE DOING TODAY Engineering

8/12/2023 vl.5 © 2023 Marcus Engineering, LLC 8

8/12/2023 vl.5 © 2023 Marcus Engineering, LLC

What You Should Know %ﬂfnuéem

*C, especially pointers.

* And how C may be translated to machine code.

* A basic understanding of object-oriented
programming.

* Knowing C++ would help.

*Basic Ghidra usage.

8/12/2023 vl.5 © 2023 Marcus Engineering, LLC 10

Agenda

Marcus f’ﬁﬁ/”x

Engineering

* Introductory Example

* Caveats, etc.

*Virtual Table Primer

e Structure of Primary VTables

* Structure of Secondary VTables
* Typeinfo and Hierarchy

* Miscellanea

* Exercise (time permitting)

8/12/2023 vl.5 © 2023 Marcus Engineering, LLC

11

Decompiling some code... Marcus 73

* One day, you're decompiling some code in Ghidra.

*You see this:
FUN 01234567 (param 1);

* Ok, easy, it’s calling some function at 0x01234567.

* But you also see this:

(** (code **) (*param 1 + 0x8)) (param 1);

* What’s it actually calling..?

So what is it? E"nﬁfnuéeﬁfé

* This is the decompilation of a binary originally written in C++.
You’re looking at calls to what were originally methods on a
C++ class.

* And as it so happens, that class has virtual methods.

* With an empty structural type for this, Ghidra will decompile
a virtual call like so:

(**(code **)(*(int *)this +))(this);

 What's getting called???
* The function pointer at the address stored in “this” plus o ?
* Yep, it’s a virtual function.

EXAMPLE — Annotation | Marcus 7t

* Original decompilation:
(**(code **)(*(int *)this + 0x8))(this);

*Now define a type for this:

typedef struct {
void ** vtable;

} Base;

* New decompilation:
(*(code *)(this->vtable[1]))(this);

8/12/2023 vl.5 © 2023 Marcus Engineering, LLC 14

EXAMPLE — Annotation I Marcus 7t

(*(code *)(this-»>vtable[1]))(this);
*Now define a type for this->vtable:

typedef struct { typedef struct {
code * foo0; Base: :vtable-funcs
code * bar; * vtable;

} Base::vtable-funcs; @} Base;

*Final decompilation:
(*this->vtable->bar)(this); — Nicel

8/12/2023 vl.5 © 2023 Marcus Engineering, LLC 15

C++interms of C E/r%fnuesem

* (*this->vtable->bar)(this); is a lot easier
to understand than the original was...
* But it’s probably not how the original code looked.
* More like... bar() ;.

*But Ghidra decompiles C, not C++.
* As is the case with most decompilation tools.

*So, we need to reimagine all of C++’s features in
terms of pure C.

* Which is actually pretty easy! Just very verbose.

Marcus)‘A’v‘h’\

Engineering

Prefacing
Miscellanea

The important odds and ends!

8/12/2023 vl.5 © 2023 Marcus Eng ineering, LLC

How to identify a C++ binary? Marcus FY%

*|t’s all about mangled names.
« ZN3Foo3barEv or something like that.
* Check the ABI, very intricate scheme.

* Will have lots of linker symbols exhibiting this
sort of mangling.

* If there are no linker symbols, (fewer of) these
names can still be found as const strings.

*If on a non-GCC platform, the mangling may look
very different, but should still be present.

Some Caveats %ﬂfnuéem

* These techniques were originally developed on 32-
bit ARM binaries compiled with GCC 4.8/4.9.

* They seem to be generally applicable to other versions
and platforms of GCC.

* Indeed, our exercise today will be on x86_64.

* Ghidra seems to be better at picking up on objects
and vcalls on x86 than on ARM.

* So, the initial decompilation of an x86 binary may be
different and more complete than shown here.

More Caveats %ﬂfnuéem

* GCC uses the Itanium C++ ABI.
* The Itanium ABI is not universal on x86.
e That’s why this workshop is about GCC.
* MSVC binaries could be completely different.
* | haven’t checked.
* But, Itanium ABI is more common on other platforms.
* It’s the official standard for ARM.

* Also, I've never really developed in C++...
* But | have a lot of experience in C, and OOP in Python.

* So, | learned large portions of the C++ language from the
ABIl and decompiled binaries.

Hit the books! E"nﬁfnuéeﬁfé

* The ltanium C++ ABI Specification is an invaluable
resource for working with vtables emitted by GCC.
 Particularly Section 2.5, “Virtual Table Layout”.

* https://itanium-cxx-abi.github.io/cxx-abi/abi.html
* This presentation cannot and will not supplant it!

* Yes, that’s the Itanium C++ ABI. It is widely used, even though nobody
uses Itanium anymore.

* The ARM ABI and GNU GCC both specifically call it out.
* Though, GCC extends it a bit... good luck there!

8/12/2023 vl.5 © 2023 Marcus Engineering, LLC 21

https://itanium-cxx-abi.github.io/cxx-abi/abi.html

We’re not covering the whole ABI! E"nﬁfn”éeﬁfé

* We will not be discussing classes with virtual bases.

* They complicate static analysis.

* They don’t seem to be very common.
* We have actually dealt with a few now, it’s not that bad.

» See Category 3/4 vtables in Section 2.5.3 of the ABI.

* So, the vtables will be fairly simple, and we’ll never deal with
construction vtables or VTTs.

8/12/2023 vl.5 © 2023 Marcus Engineering, LLC 22

Marcus f)’xﬁl”g

Key Terms Engineering
*Object *Thunk
*Class * Emitted
* Concrete Type * Binary Code/Data
* Most-Derived Class *\irtual Base
*Virtual Method *Ghidra

 Pure Virtual Method

8/12/2023 vl.5 © 2023 Marcus Engineering, LLC 23

Key Terms — Quick Glossary Marcus P03

* Object Data — the data actually stored in
memory for an instance of an object.
*i.e., all non-static fields.

* Representable as a C struct.

*Subobject — a section of object data belonging to
a particular class in the object’s type hierarchy.

Key Terms — Glossary Marcus P03

* Object —an instance of a class.
e Class — the type of an object.

* Most-Derived Class — when considering a specific object’s class hierarchy, the
single class which is not a base of any other class. Its “type”, more or less.
e Object Data — the data actually stored in memory for an instance of an object.
* i.e., all non-static fields.
* Representable as a C struct.

e Subobject — a section of object data belonging to a particular class in the
object’s type hierarchy.
 Virtual Method — a method on a class, which can be overridden in a subclass.

* i.e. what code is called depends on the object type.
e Can be overridden (non-virtual methods cannot be).

* Thunk — a very small function which has the sole purpose of calling another
function. One might also call it a “shim”.

Key Terms — Glossary Marcus P03

* Emitted — actually turned into machine code or data by the compiler.

e Pure Virtual Method — a virtual method which does not have an
implementation in its containing class.
 Calling it would be a fatal error (fine to call an override, of course).

 Virtual Base — a base whose subobject will exist exactly once in the most-
derived class, regardless of how many times it appears in the hierarchy.

* We're not going to deal with these!

* Typeinfo Structure — some static, constant data emitted by the compiler which
describes a type (usually a class).
* Describes a type sufficiently for comparing it to other types...
* But not sufficiently for full runtime reflection (darn!).

e Ghidra — software reverse-engineering framework with disassembler and
decompiler.
* |t’s our tool for this workshop.

Marcus ?/”v{)’\

Engineering

The Basics

What’s a VTable?

8/12/2023 vl.5 © 2023 Marcus Engineering, LLC 27

Why have “VTables”? Marcus 74}

|II

* C++ allows for “virtual” functions that can be
overridden in subclasses, changing behavior.
* And objects of a derived type can be treated as if they
were objects of the base type.

*\VTables are the fundamental mechanism that allows
subtype polymorphism in C++ incco).

*So at runtime, somehow, obj->bar(); needs to call
Base: :bar or Derived: :bar depending solely on
the type of obj.

* This is what ob7j’s VTable accomplishes.

What is a “VTable”? E’%{#ﬁﬁé

* Virtual Table — an array of function pointers to the
implementations of all virtual methods in a class.

e e.g., base methods, method overrides, concrete
implementations of pure virtual methods.

* Also, contains information about the layout of subobjects,
and type hierarchy.

* Constant, emitted by the compiler; used at runtime.

When will you see a VTable? Marcus 73

* Not all classes have a vtable.

* To have a vtable, the class must:

e Declare a virtual function, or
* Inherit a virtual function.

* Doesn’t matter if bases are declared virtual or not; if a base
has a virtual function:

e It has a vtable.

* Its inheriting class will inherit that virtual function.
* |t may or may not override it.

* Its inheriting class will have a vtable.

Marcus ?/”v{)’\

Engineering

Basic VTables

(Classes with at most one non-virtual base)

8/12/2023 vl.5 © 2023 Marcus Engineering, LLC 32

What Do VTables Look Like? Marcus 7t

* For now, let’s just focus on the
Primary VTable:

e “Offset to top” — 7€ero. (Secondary VTable)
* Typeinfo pointer.

* To compiler emitted typeinfo
structure for the class.
* Function pointers.

* To methods which will accept function pointer
object data from exactly this class function pointer
as their this parameter. function pointer

* For x86_64, pointers are on an 8- IS [FElEs
byte alighment.

Primary VTable
(Secondary VTable)

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 33

Primary VTables — Layout arcs

* Every class with virtual class Base { | |
. virtual void foo ();
functions has one. virtual void bar ();

. . . unsigned int b;

* Virtual functions appear in virtual ~Base() {}
source order. }

* Virtual functions of the primary Primary VTable
base classes appear first, in
their original order. B RAED

* Virtual destructors get two
entries — the base- and IR TEE
complete-object destructor, in YIITES BRI
that order vfunc: ~Base (D1/D2)

vfunc: ~Base (DO)

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 34

Typing VTables as C Structures E’r‘wﬂfn“ée’ﬁfé

*\VTables can have structure type annotations
applied in Ghidra.

* Once you've taken the time to make them, they
propagate to everywhere that class is used, and
provide more meaningful decompilation.

*Only bother with the function pointer array.
* Nothing really references the RTTI before it.

Base’s VTable as a C Structure %ﬁ#:ﬁé

class Base {
virtual void foo ();
virtual void bar ();
unsigned int b;

}

* The VTable will have just foo and bar.

typedef struct {
void (*foo)(Base * this);
void (*bar)(Base * this);
} Base::vtable-funcs;

8/12/2023 vl.,5 © 2023 Marcus Engineering, LLC 36

Demo in Ghidra Marcus 7t

01010101104
11010111010,
0110101
1010188 001 o

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 37

Marcus ?A’vﬁ’\

Engineering

The
Not-So-Basics

Secondary VTables

8/12/2023 vl.5 © 2023 Marcus Engineering, LLC 41

Secondary VTables — When? %ﬁfnuéem

* The derived class will have a class Base { .
) virtual void foo (void);
vtable for each base class with virtualdvoid Ear (void);
. . nsigned int b;
virtual functions. .

class Quirk {
virtual void quirk (void);

o d k ;
* If there’s multiple such bases, , " °
there’s a secondary vtable. class Derived : Quirk, Base {
- irtual void b id);
* In the example to the right, Void bar (void): (vord)
“Base-in-Derived” is the official unsigned char d;

name for such vtable.

Primary Vtable — Derived (and Quirk)

Secondary Vtable —Base-in-Derived

8/12/2023 vl.5 © 2023 Marcus Engineering, LLC 42

Secondary VTables — What? %agﬁfnuéem
~

\ Primary VTable (Derived, including Quirk)

class Base {
virtual void foo (void);
virtual void bar (void); offset to top (0)
unsigned int b; T : :
} Derived’s typeinfo pointer
vfunc: quirk = Quirk::quirk
class Quirk { vfunc: baz = Derived: :baz
virtual void quirk (void); vfunc: bar = Derived: :bar
void * Q;
) Secondary VTable (Base-in-Derived)
class Derived : Quirk, Base {
virtual void baz (void); offset to top (-16)
void bar (void); — : :
unsigned char d; Derived’s typeinfo pointer
} vfunc: foo = Base::foo
\ / vfunc: bar = (thunkto) Derived::bar

8/12/2023 vl.5 © 2023 Marcus Engineering, LLC 43

Secondary Vtables — Why?

Marcus f(”v{%

Engineering

-

class Base {
virtual void foo (void);
virtual void bar (void);
unsigned int b;

class Quirk {
virtual void quirk (void);
void * Q;

class Derived : Quirk, Base {
virtual void baz (void);
void bar (void);
unsigned char d;

¥

N

~

/

8/12/2023

Quirk Object Data Layout
Quirk *

Base Object Data Layout

vtable * vtable
unsigned int b

Derived Object Data Layout
Quirk *, Derived *

vtable * vtable

| unsigned int b i
Derived obj;

assert((void *)dynamic_cast<Derived *>(&obj)
== (void *)dynamic_cast<Base *>(&obj));
// Would faill

v1.5 © 2023 Marcus Engineering, LLC 44

Secondary Vtables — Why? Marcus FY%

*|t’s all about the layout of the object data.
* New fields go last, but...
* Only one base subobject can go first.

*Need some kind of adjustment to Derived if
we pass it to something expecting a Base.
* Virtual functions are still overridden, though.
* So that adjustment has to be undone.

Secondary Vtables — Why? Marcus P03

*The this pointer needs adjustment between
Derived* and Base*.

e Consumers of Base* need a Base*, not Derived*.

* The implementations of Derived’s methods need a
Derived*, even if the caller has it as a Base*.

*The secondary vtable makes it all work.
* |t can point to special code to handle this...

8/12/2023 vl.5 © 2023 Marcus Engineering, LLC 46

Secondary Vtables — How? E"nﬁfnuéeﬁfé

When converting to Base, you get a pointer to
the Base subobject, with its secondary vtable.

*The secondary vtable contains pointers to thunks,
instead of the actual methods on Derived.

* These thunks accept a Base*, convert it back to

a Derived*, and call the associated method on
Derived.

8/12/2023 vl.5 © 2023 Marcus Engineering, LLC 47

Notice The Offset

Marcus }%A’\

Engineering

-~

class Base {
virtual void foo (void);
virtual void bar (void);
unsigned int b;

class Quirk {
virtual void quirk (void);
void * Q;

¥

class Derived : Quirk, Base {
virtual void baz (void);
void bar (void);
unsigned char d;

¥

o

~

/

Derived Object Data Layout

Quirk *, Derived *

Base *

Secondary VTable (Base-in-Derived)

offset to toy (-16)

Derived’s typeinfo pointer

vfunc: foo = (thunkto) Base: :foo

vfunc: bar = (thunkto) Derived: :bar

8/12/2023 vl.5 © 2023 Marcus Engineering, LLC 48

Secondary Vtables — Why, really? Marcus FY%

*The secondary vtable contains pointers to
thunks, instead of the actual methods.

* Consumers don’t need to adjust the
this pointer at all, because the thunks will.

*So, consumers don’t need to consider an
object’s concrete type for overriding to
work.

Quite Common... %ﬂfnuéem

*|n the applications we were reverse engineering,
probably half of the classes we encountered had
secondary vtables.

*They really liked to use Qt for everything, but
not base interface classes.

* So you inherit from QObject, and then the
interface, each with virtual functions.

Demo in Ghidra Marcus 7t

01010101104
11010111010,
0110101
1010188 001 o

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 51

Keep Track of Types! %ﬂfnuiem

You’'ve identified a Derived obj.
* In the binary, it may at any moment get upcasted
into a Base*!

* Their layout is not compatible, nor is the layout of
their vtables.

*So, if obj gets manipulated, and then a vcall
happens... make sure you know what type it is
right then, so you know which vtable it’s using.

* Sometimes Ghidra won’t recognize that an operation has changed the type of
a variable. So you can’t change the before/after type separately. In this case,
just use lots of comments.

8/12/2023 vl.5 © 2023 Marcus Engineering, LLC 54

Marcus ?/”v{)’\

Engineering

Type
Hierarchy

(and how to figure it out)

8/12/2023 vl.5 © 2023 Marcus Engineering, LLC 55

Typeinfo Structures %ﬂf#;eﬁﬁé

* Constant “RunTime Type Information” emitted
by the compiler for every class.
* Required by the ABI.

* Contains links to its
base classes.

* Contains the name of the class.
* That’s really helpful in a stripped binary!

Typeinfo Structures %ﬂf#;eﬁﬁ

*Every vtable has a pointer to its class’s typeinfo.
* SO, you can propagate the name from the typeinfo.

*Two particularly helpful varieties:
- si class type info— for single base.
- wvmi class type info—for multiple bases.

*Those link to the typeinfo of the base classes.
* And of course, they name the class.

Typeinfo Structures - Reference E’r']%ﬁfn“ief?‘rfé

e Simple C layouts of C++ ABI class typeinfos:

typedef struct { typedef struct {
void ** vtable; bool non_diamond repeat:1;
const char * name; bool diamond_shaped:1;
typeinfo * base_type; int :2;
} _si class_type info; bool flags unknown:1;
int :27;
typedef struct { } vmi_flags;
void ** vtable;
const char * name; typedef struct {

} __class type info; __class_type info * base_type;

offset flags offset flags;

typedef struct { } base class type info;
void ** vtable;
const char * name; typedef struct {
vmi flags flags; bool virtual:1;
uint32_t base count; bool public:1;
base class type info[] base info; int offset:30;
} __vmi_class type info; } offset flags;

8/12/2023 vl.5 © 2023 Marcus Engineering, LLC 58

Discovering VTables E"nﬁfn“éeﬁf;}

* Sometimes, there are no linker symbols...

* The property that each vtable has a pointer to a typeinfo,
and each typeinfo has a vtable too, is very useful!
e Start by finding and labelling the standard typeinfo vtables.
e class type info::vtable-funcs
e si class type info::vtable-funcs
e vmi class type info::vtable-funcs

* Important: put a label at the start of the function
pointers, since that’s what typeinfo objects will point to.

* Now references to these typeinfos will be clearly visible.

8/12/2023 vl.5 © 2023 Marcus Engineering, LLC 59

What VTables and Typeinfo Look Like %Zﬁf#éﬁé

Typeinfo
* Absolute pointer
* (To typeinfo’s vtable)

* Absolute pointer
* (To type name string)

* Maybe more pointers
* (To parent typeinfos)

VTable (primary)
e /ero

* Absolute pointer
* (To typeinfo)

* One or more absolute
pointers

* (To virtual functions)

Proximity in the Binary Marcus P03

* Const data coming from a single translation unit
is usually all close together.
* Including vtables and typeinfos.
e Same goes for program text?

*So if you find something interesting, the nearby
data is probably related.

Proximity is key. Marcus P03

* Part of what we had to analyze was a huge
binary with no linker symbols.

*Being able to recognize that some things were
related because they were nearby was super
helpful — it multiplies what you learn.

Naming the Const Data E’r‘wﬂfn“éeﬁf;}

*Once you've found the typeinfo, the class name,
and the vtable, you should label it.

*| like to use these names:
e<class>::typeinfo, ::typeinfo-name
e<class>::vtable, ::vtable-funcs

*Now everywhere those are used, you have a nice
descriptive name.

8/12/2023 vl.5 © 2023 Marcus Engineering, LLC 63

Working Up the Chain Marcus 73

*|f you’ve got a class with some pure virtual
methods, you can’t tell what they do.

*But you can use the typeinfo to look for a
subclass that implements them...

* Also just generally good to annotate vtables up
and down the inheritance tree.

Demo in Ghidra Marcus 7t

01010101104
11010111010,
0110101
1010188 001 o

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 65

Demo Recap arcs

* We found mangled names as const strings.
*Like “4Base”.

*These names were used in typeinfo structures.
*The typeinfo structures were used in vtables.

* And finally, the vtables were used in
constructors.

Marcus ?/”v{)’\

Engineering

Miscellanea

(subtitle)

8/12/2023 vl.5 © 2023 Marcus Engineering, LLC 68

When this isn’t first. E"nﬁfnuéeﬁfé

*|f the return type is non-trivial, the this pointer
may be preceded by a RETURN pointer.
* Also for constructors with virtual bases.

* Also, double words — check your ABI. Ghidra may
well get it wrong; it certainly does on ARM.

Template Classes in Ghidra %ﬂfnuéem

* Instances of template classes will frequently have mutually-
compatible object data.

* It may even be guaranteed by the definition of the class.

* It's tempting to just make one struct in Ghidra, and typedef the
instantiations to it!
* This will break the decompiler!

* [t cannot seem to handle “this” (specifically from __ thiscall)
pointing to anything other than a struct.

* Worse, it can’t handle that scenario anywhere in the call tree...

* Instead, | suggest:

* Making the one struct with the concrete object layout.
* Keeping all the template instantiation object data structs.
* Adding to each such struct, the layout struct as its sole member.

GCC Extensions to Itanium C++ ABI %ngnuesem

* Sometimes you’ll see a mangling that just does not make
sense, according to the “official” ABI.

* Of course, it’s hardly official, it’s just a community-maintained
GitHub repo.

e Known extensions:

e L at the start of a function mangling:
* Indicates a static function.
e e.g..“ ZL3foov” - static void foo (void);
* C4 as a constructor name:
* Indicates a “base-object allocating constructor”.
* e.g.:“ ZLN3FooC4EvV” - class Foo : Base { _? Foo () {} }
* Well, the C++ half of that is notional. But you get the idea.

ltanium C++ ABI — Available in PDF] E"nﬁfn“ée’ﬁr’fé

*|’'ve typeset the ABI, which in its native form is
one big webpage.
* https://github.com/itanium-cxx-abi/cxx-
abi/files/8994612/Itanium.CXX.ABl.June2022.pdf

*Easier to print, easier to bookmark.

8/12/2023 vl.5 © 2023 Marcus Engineering, LLC 72

https://github.com/itanium-cxx-abi/cxx-abi/files/8994612/Itanium.CXX.ABI.June2022.pdf
https://github.com/itanium-cxx-abi/cxx-abi/files/8994612/Itanium.CXX.ABI.June2022.pdf

Marcus f%{”\

Engineering

Activity

SRE Challenge

8/12/2023 vl.5 © 2023 Marcus Engineering, LLC 74

Final Demo/Activity Marcus P03

* A little CLI “hashing” program.
*Enter some text, get a number.

* What algorithm is it using?

Stripped of linker symbols.
* But there are library imports.

Just to make it interesting...

Marcus ;‘Aﬁﬁ/’ﬂ

Engineering

*The algorithm is nhon-standard.

* Won’t have any luck googling the constants...

+'ve had acolleaguerandomize-so

edetatlsso

this isn’t totally rehearsed.

* |lt’s been a couple weeks and | don’t remember

what | wrote. Close enough!

Final Demo/Activity in Ghidra E’r‘]%ﬁfn“éeﬁfé

11018101104
11010111010,
po110fp1o1g
3
1010188 001 o

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 77

Thank you for coming!

	Introduction
	Slide 1: Static Analysis of C++ Virtual Tables (from GCC)
	Slide 2: Step One – Get Set Up
	Slide 3: Welcome!
	Slide 4: Stuck on Indirection…
	Slide 5: Virtual vs. Direct Calls
	Slide 6: Better Try Something Else…
	Slide 7: What we’re doing today
	Slide 8: What we’re doing today
	Slide 9
	Slide 10: What You Should Know
	Slide 11: Agenda

	Introductory Example
	Slide 12: Decompiling some code…
	Slide 13: So what is it?
	Slide 14: EXAMPLE – Annotation I
	Slide 15: EXAMPLE – Annotation II
	Slide 16: C++ in terms of C

	Pre-Miscellanea
	Slide 17: Prefacing Miscellanea
	Slide 18: How to identify a C++ binary?
	Slide 19: Some Caveats
	Slide 20: More Caveats
	Slide 21: Hit the books!
	Slide 22: We’re not covering the whole ABI!
	Slide 23: Key Terms
	Slide 24: Key Terms – Quick Glossary
	Slide 25: Key Terms – Glossary
	Slide 26: Key Terms – Glossary

	Virtual Table Primer
	Slide 27: The Basics
	Slide 28: Why have “VTables”?
	Slide 29: What is a “VTable”?
	Slide 30: When will you see a VTable?

	Primary VTable Structure
	Slide 32: Basic VTables
	Slide 33: What Do VTables Look Like?
	Slide 34: Primary VTables – Layout
	Slide 35: Typing VTables as C Structures
	Slide 36: Base’s VTable as a C Structure
	Slide 37: Demo in Ghidra

	Secondary VTable Structure
	Slide 41: The Not-So-Basics
	Slide 42: Secondary VTables – When?
	Slide 43: Secondary VTables – What?
	Slide 44: Secondary Vtables – Why?
	Slide 45: Secondary Vtables – Why?
	Slide 46: Secondary Vtables – Why?
	Slide 47: Secondary Vtables – How?
	Slide 48: Notice The Offset
	Slide 49: Secondary Vtables – Why, really?
	Slide 50: Quite Common…
	Slide 51: Demo in Ghidra
	Slide 54: Keep Track of Types!

	Type Hierarchy
	Slide 55: Type Hierarchy
	Slide 56: Typeinfo Structures
	Slide 57: Typeinfo Structures
	Slide 58: Typeinfo Structures - Reference
	Slide 59: Discovering VTables
	Slide 60: What VTables and Typeinfo Look Like
	Slide 61: Proximity in the Binary
	Slide 62: Proximity is key.
	Slide 63: Naming the Const Data
	Slide 64: Working Up the Chain
	Slide 65: Demo in Ghidra
	Slide 66: Demo Recap

	Miscellanea
	Slide 68: Miscellanea
	Slide 69: When this isn’t first.
	Slide 70: Template Classes in Ghidra
	Slide 71: GCC Extensions to Itanium C++ ABI
	Slide 72: Itanium C++ ABI – Available in PDF!
	Slide 74: Activity
	Slide 75: Final Demo/Activity
	Slide 76: Just to make it interesting…
	Slide 77: Final Demo/Activity in Ghidra
	Slide 78: Thanks for coming!
	Slide 79

